Ratamess NA, Alvar BA, Evetoch TK, Housh TJ, Kibler WB, Kraemer WJ. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708. https://doi.org/10.1249/MSS.0b013e3181915670.
Article
Google Scholar
Thompson SW, Rogerson D, Ruddock A, Barnes A. The effectiveness of two methods of prescribing load on maximal strength development: a systematic review. Sports Med. 2020;50(5):919–38. https://doi.org/10.1007/s40279-019-01241-3.
Article
CAS
PubMed
Google Scholar
Zourdos MC, Dolan C, Quiles JM, Klemp A, Blanco R, Krahwinkel AJ, et al. Efficacy of daily one-repetition maximum squat training in well-trained lifters: three case studies. Med Sci Sports Exerc. 2015;47(5S):940. https://doi.org/10.1249/01.mss.0000479287.40858.b7.
Article
Google Scholar
Padulo J, Mignogna P, Mignardi S, Tonni F, D’Ottavio S. Effect of different pushing speeds on bench press. Int J Sports Med. 2012;33(5):376–80. https://doi.org/10.1055/s-0031-1299702.
Article
CAS
PubMed
Google Scholar
Helms ER, Cronin J, Storey A, Zourdos MC. Application of the repetitions in reserve-based rating of perceived exertion scale for resistance training. Strength Cond J. 2016;38(4):42–9. https://doi.org/10.1519/ssc.0000000000000218.
Article
PubMed
PubMed Central
Google Scholar
Greig L, Stephens Hemingway BH, Aspe RR, Cooper K, Comfort P, Swinton PA. Autoregulation in resistance training: addressing the inconsistencies. Sports Med. 2020. https://doi.org/10.1007/s40279-020-01330-8.
Article
PubMed
PubMed Central
Google Scholar
Mansfield SK, Peiffer JJ, Hughes LJ, Scott BR. Estimating repetitions in reserve for resistance exercise: an analysis of factors which impact on prediction accuracy. J Strength Cond Res. 2020. https://doi.org/10.1519/jsc.0000000000003779.
Article
PubMed
Google Scholar
Cooke DM, Haischer MH, Carzoli JP, Bazyler CD, Johnson TK, Varieur R, et al. Body mass and femur length are inversely related to repetitions performed in the back squat in well-trained lifters. J Strength Cond Res. 2019;33(3):890–5. https://doi.org/10.1519/jsc.0000000000003021.
Article
PubMed
Google Scholar
Larsen S, Kristiansen E, van den Tillaar R. Effects of subjective and objective autoregulation methods for intensity and volume on enhancing maximal strength during resistance-training interventions: a systematic review. PeerJ. 2021;9: e10663. https://doi.org/10.7717/peerj.10663.
Article
PubMed
PubMed Central
Google Scholar
Zourdos MC, Klemp A, Dolan C, Quiles JM, Schau KA, Jo E, et al. Novel resistance training-specific rating of perceived exertion scale measuring repetitions in reserve. J Strength Cond Res. 2016;30(1):267–75. https://doi.org/10.1519/jsc.0000000000001049.
Article
PubMed
Google Scholar
Zourdos MC, Goldsmith JA, Helms ER, Trepeck C, Halle JL, Mendez KM, et al. Proximity to failure and total repetitions performed in a set influences accuracy of intraset repetitions in reserve-based rating of perceived exertion. J Strength Cond Res. 2019. https://doi.org/10.1519/jsc.0000000000002995.
Article
PubMed
Google Scholar
González-Badillo JJ, Sánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31(5):347–52. https://doi.org/10.1055/s-0030-1248333.
Article
PubMed
Google Scholar
Morán-Navarro R, Martínez-Cava A, Sánchez-Medina L, Mora-Rodríguez R, González-Badillo JJ, Pallarés JG. Movement velocity as a measure of level of effort during resistance exercise. J Strength Cond Res. 2019;33(6):1496–504. https://doi.org/10.1519/jsc.0000000000002017.
Article
PubMed
Google Scholar
Jovanovic M, Flanagan EP. Researched applications of velocity based strength training. J Aust Strength Cond. 2014;22:58–69.
Google Scholar
Dorrell HF, Smith MF, Gee TI. Comparison of velocity-based and traditional percentage-based loading methods on maximal strength and power adaptations. J Strength Cond Res. 2020;34(1):46–53. https://doi.org/10.1519/jsc.0000000000003089.
Article
PubMed
Google Scholar
Shattock K, Tee JC. Autoregulation in resistance training: a comparison of subjective versus objective methods. J Strength Cond Res. 2020. https://doi.org/10.1519/jsc.0000000000003530.
Article
PubMed
Google Scholar
Banyard HG, Tufano JJ, Delgado J, Thompson SW, Nosaka K. Comparison of the effects of velocity-based training methods and traditional 1RM-percent-based training prescription on acute kinetic and kinematic variables. Int J Sports Physiol Perform. 2019;14(2):246–55. https://doi.org/10.1123/ijspp.2018-0147.
Article
PubMed
Google Scholar
Dorrell HF, Moore JM, Gee TI. Comparison of individual and group-based load-velocity profiling as a means to dictate training load over a 6-week strength and power intervention. J Sports Sci. 2020;38:1–8. https://doi.org/10.1080/02640414.2020.1767338.
Article
Google Scholar
Orange ST, Metcalfe JW, Robinson A, Applegarth MJ, Liefeith A. Effects of in-season velocity- versus percentage-based training in academy rugby league players. Int J Sports Physiol Perform. 2019;15:1–8. https://doi.org/10.1123/ijspp.2019-0058.
Article
Google Scholar
Graham T, Cleather DJ. Autoregulation by “repetitions in reserve" leads to greater improvements in strength over a 12-week training program than fixed loading. J Strength Cond Res. 2019. https://doi.org/10.1519/jsc.0000000000003164.
Article
Google Scholar
Helms ER, Byrnes RK, Cooke DM, Haischer MH, Carzoli JP, Johnson TK, et al. RPE vs. percentage 1RM loading in periodized programs matched for sets and repetitions. Front Physiol. 2018;9:247. https://doi.org/10.3389/fphys.2018.00247.
Article
PubMed
PubMed Central
Google Scholar
Banyard HG, Tufano JJ, Weakley JJS, Wu S, Jukic I, Nosaka K. Superior changes in jump, sprint, and change-of-direction performance but not maximal strength following 6 weeks of velocity-based training compared with 1-repetition-maximum percentage-based training. Int J Sports Physiol Perform. 2020;16:1–11. https://doi.org/10.1123/ijspp.2019-0999.
Article
Google Scholar
Arede J, Vaz R, Gonzalo-Skok O, Balsalobre-Fernandéz C, Varela-Olalla D, Madruga-Parera M, et al. Repetitions in reserve vs maximum effort resistance training programs in youth female athletes. J Sports Med Phys Fit. 2020;60(9):1231–9. https://doi.org/10.23736/s0022-4707.20.10907-1.
Article
Google Scholar
Helms ER, Cross MR, Brown SR, Storey A, Cronin J, Zourdos MC. Rating of perceived exertion as a method of volume autoregulation within a periodized program. J Strength Cond Res. 2018;32(6):1627–36. https://doi.org/10.1519/jsc.0000000000002032.
Article
PubMed
Google Scholar
Sánchez-Medina L, González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43(9):1725–34. https://doi.org/10.1249/MSS.0b013e318213f880.
Article
PubMed
Google Scholar
Jukic I, Van Hooren B, Ramos AG, Helms ER, McGuigan MR, Tufano JJ. The effects of set structure manipulation on chronic adaptations to resistance training: a systematic review and meta-analysis. Sports Med. 2021. https://doi.org/10.1007/s40279-020-01423-4.
Article
PubMed
Google Scholar
Galiano C, Pareja-Blanco F, Hidalgo de Mora J, Sáez de Villarreal E. Low-velocity loss induces similar strength gains to moderate-velocity loss during resistance training. J Strength Cond Res. 2020. https://doi.org/10.1519/jsc.0000000000003487.
Article
PubMed
Google Scholar
Held S, Hecksteden A, Meyer T, Donath L. Improved strength and recovery after velocity-based training: a randomized controlled trial. Int J Sports Physiol Perform. 2021;16:1–9. https://doi.org/10.1123/ijspp.2020-0451.
Article
Google Scholar
Pareja-Blanco F, Sánchez-Medina L, Suárez-Arrones L, González-Badillo JJ. Effects of velocity loss during resistance training on performance in professional soccer players. Int J Sports Physiol Perform. 2017;12(4):512–9. https://doi.org/10.1123/ijspp.2016-0170.
Article
PubMed
Google Scholar
Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, Sanchis-Moysi J, Dorado C, Mora-Custodio R, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports. 2017;27(7):724–35. https://doi.org/10.1111/sms.12678.
Article
CAS
PubMed
Google Scholar
Pareja-Blanco F, Alcazar J, Sánchez-Valdepeñas J, Cornejo-Daza PJ, Piqueras-Sanchiz F, Mora-Vela R, et al. Velocity loss as a critical variable determining the adaptations to strength training. Med Sci Sports Exerc. 2020;52(8):1752–62. https://doi.org/10.1249/mss.0000000000002295.
Article
PubMed
Google Scholar
Pareja-Blanco F, Alcazar J, Cornejo-Daza PJ, Sánchez-Valdepeñas J, Rodriguez-Lopez C, Hidalgo-de Mora J, et al. Effects of velocity loss in the bench press exercise on strength gains, neuromuscular adaptations and muscle hypertrophy. Scand J Med Sci Sports. 2020. https://doi.org/10.1111/sms.13775.
Article
PubMed
Google Scholar
Rodiles-Guerrero L, Pareja-Blanco F, León-Prados JA. Effect of velocity loss on strength performance in bench press using a weight stack machine. Int J Sports Med. 2020. https://doi.org/10.1055/a-1179-5849.
Article
PubMed
Google Scholar
Rodríguez-Rosell D, Yáñez-García JM, Mora-Custodio R, Pareja-Blanco F, Ravelo-García AG, Ribas-Serna J, et al. Velocity-based resistance training: impact of velocity loss in the set on neuromuscular performance and hormonal response. Appl Physiol Nutr Metab. 2020;45(8):817–28. https://doi.org/10.1139/apnm-2019-0829.
Article
PubMed
Google Scholar
Rodríguez-Rosell D, Yáñez-García JM, Mora-Custodio R, Sánchez-Medina L, Ribas-Serna J, González-Badillo JJ. Effect of velocity loss during squat training on neuromuscular performance. Scand J Med Sci Sports. 2021. https://doi.org/10.1111/sms.13967.
Article
PubMed
Google Scholar
Sánchez-Moreno M, Cornejo-Daza PJ, González-Badillo JJ, Pareja-Blanco F. Effects of velocity loss during body mass prone-grip pull-up training on strength and endurance performance. J Strength Cond Res. 2020;34(4):911–7. https://doi.org/10.1519/jsc.0000000000003500.
Article
PubMed
Google Scholar
Davies TB, Tran DL, Hogan CM, Haff GG, Latella C. Chronic effects of altering resistance training set configurations using cluster sets: a systematic review and meta-analysis. Sports Med. 2021. https://doi.org/10.1007/s40279-020-01408-3.
Article
PubMed
Google Scholar
Davies T, Orr R, Halaki M, Hackett D. Effect of training leading to repetition failure on muscular strength: a systematic review and meta-analysis. Sports Med. 2016;46(4):487–502. https://doi.org/10.1007/s40279-015-0451-3.
Article
PubMed
Google Scholar
Davies T, Orr R, Halaki M, Hackett D. Erratum to: effect of training leading to repetition failure on muscular strength: a systematic review and meta-analysis. Sports Med. 2016;46(4):605–10. https://doi.org/10.1007/s40279-016-0509-x.
Article
PubMed
Google Scholar
Morán-Navarro R, Pérez CE, Mora-Rodríguez R, de la Cruz-Sánchez E, González-Badillo JJ, Sánchez-Medina L, et al. Time course of recovery following resistance training leading or not to failure. Eur J Appl Physiol. 2017;117(12):2387–99. https://doi.org/10.1007/s00421-017-3725-7.
Article
CAS
PubMed
Google Scholar
Vieira AF, Umpierre D, Teodoro JL, Lisboa SC, Baroni BM, Izquierdo M, et al. Effects of resistance training performed to failure or not to failure on muscle strength, hypertrophy, and power output: a systematic review with meta-analysis. J Strength Cond Res. 2021. https://doi.org/10.1519/jsc.0000000000003936.
Article
PubMed
Google Scholar
Grgic J, Schoenfeld B, Orazem J, Sabol F. Effects of resistance training performed to repetition failure or non-failure on muscular strength and hypertrophy: a systematic review and meta-analysis. J Sport Health Sci. 2021. https://doi.org/10.1016/j.jshs.2021.01.007.
Article
PubMed
Google Scholar
Jukic I, Ramos AG, Helms ER, McGuigan MR, Tufano JJ. Acute effects of cluster and rest redistribution set structures on mechanical, metabolic, and perceptual fatigue during and after resistance training: a systematic review and meta-analysis. Sports Med. 2020. https://doi.org/10.1007/s40279-020-01344-2.
Article
PubMed
Google Scholar
Pareja-Blanco F, Rodríguez-Rosell D, Aagaard P, Sánchez-Medina L, Ribas-Serna J, Mora-Custodio R, et al. Time course of recovery from resistance exercise with different set configurations. J Strength Cond Res. 2018. https://doi.org/10.1519/jsc.0000000000002756.
Article
PubMed
Google Scholar
Leite CMF, Profeta V, Chaves SFN, Benine RPC, Bottaro M, Ferreira-Júnior JB. Does exercise-induced muscle damage impair subsequent motor skill learning? Hum Mov Sci. 2019;67: 102504. https://doi.org/10.1016/j.humov.2019.102504.
Article
PubMed
Google Scholar
Grgic J, Schoenfeld BJ, Davies TB, Lazinica B, Krieger JW, Pedisic Z. Effect of resistance training frequency on gains in muscular strength: a systematic review and meta-analysis. Sports Med. 2018;48(5):1207–20. https://doi.org/10.1007/s40279-018-0872-x.
Article
PubMed
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339: b2535. https://doi.org/10.1136/bmj.b2535.
Article
PubMed
PubMed Central
Google Scholar
Abe T, DeHoyos DV, Pollock ML, Garzarella L. Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. Eur J Appl Physiol. 2000;81(3):174–80. https://doi.org/10.1007/s004210050027.
Article
CAS
PubMed
Google Scholar
Brzycki M. Strength testing—predicting a one-rep max from reps-to-fatigue. J Phys Educ Recreat Dance. 1993;64(1):88–90. https://doi.org/10.1080/07303084.1993.10606684.
Article
Google Scholar
Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1–2):50–60. https://doi.org/10.1007/s00421-002-0681-6.
Article
PubMed
Google Scholar
Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and hypertrophy adaptations between low- vs. high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res. 2017;31(12):3508–23. https://doi.org/10.1519/jsc.0000000000002200.
Article
PubMed
Google Scholar
Bottinelli R, Schiaffino S, Reggiani C. Force-velocity relations and myosin heavy chain isoform compositions of skinned fibres from rat skeletal muscle. J Physiol. 1991;437:655–72. https://doi.org/10.1113/jphysiol.1991.sp018617.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersen LL, Andersen JL, Magnusson SP, Suetta C, Madsen JL, Christensen LR, et al. Changes in the human muscle force-velocity relationship in response to resistance training and subsequent detraining. J Appl Physiol. 2005;99(1):87–94. https://doi.org/10.1152/japplphysiol.00091.2005.
Article
PubMed
Google Scholar
Weakley JJS, Wilson KM, Till K, Read DB, Darrall-Jones J, Roe GAB, et al. Visual feedback attenuates mean concentric barbell velocity loss and improves motivation, competitiveness, and perceived workload in male adolescent athletes. J Strength Cond Res. 2019;33(9):2420–5. https://doi.org/10.1519/jsc.0000000000002133.
Article
PubMed
Google Scholar
González-Badillo JJ, Rodríguez-Rosell D, Sánchez-Medina L, Gorostiaga EM, Pareja-Blanco F. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur J Sport Sci. 2014;14(8):772–81. https://doi.org/10.1080/17461391.2014.905987.
Article
PubMed
Google Scholar
Banyard HG, Nosaka K, Vernon AD, Haff GG. The reliability of individualized load-velocity profiles. Int J Sports Physiol Perform. 2018;13(6):763–9. https://doi.org/10.1123/ijspp.2017-0610.
Article
PubMed
Google Scholar
McBurnie AJ, Allen KP, Garry M, Martin M, Thomas DS, Jones PA, et al. The benefits and limitations of predicting one repetition maximum using the load-velocity relationship. Strength Cond J. 2019;41(6):28–40. https://doi.org/10.1519/ssc.0000000000000496.
Article
Google Scholar
Nevin J. Autoregulated resistance training: does velocity-based training represent the future? Strength Cond J. 2019;41(4):34–9. https://doi.org/10.1519/ssc.0000000000000471.
Article
Google Scholar
Weakley J, Mann B, Banyard H, McLaren S, Scott T, Garcia-Ramos A. Velocity-based training: from theory to application. Strength Cond J. 2020. https://doi.org/10.1519/ssc.0000000000000560.
Article
Google Scholar
Banyard HG, Nosaka K, Haff GG. Reliability and validity of the load-velocity relationship to predict the 1RM back squat. J Strength Cond Res. 2017;31(7):1897–904. https://doi.org/10.1519/jsc.0000000000001657.
Article
PubMed
Google Scholar
Hughes LJ, Banyard HG, Dempsey AR, Scott BR. Using a load-velocity relationship to predict one repetition maximum in free-weight exercise: a comparison of the different methods. J Strength Cond Res. 2019;33(9):2409–19. https://doi.org/10.1519/jsc.0000000000002550.
Article
PubMed
Google Scholar
Ruf L, Chéry C, Taylor KL. Validity and reliability of the load-velocity relationship to predict the one-repetition maximum in deadlift. J Strength Cond Res. 2018;32(3):681–9. https://doi.org/10.1519/jsc.0000000000002369.
Article
PubMed
Google Scholar
Benavides-Ubric A, Dìez-Fernandez DM, Rodriguez-Perez M, Ortega-Becerra M, Pareja-Blanco F. Analysis of the load-velocity relationship in deadlift exercise. J Sport Sci Med. 2020;9:452–9.
Google Scholar
Jukic I, García-Ramos A, Malecek J, Omcirk D, Tufano JJ. Validity of load-velocity relationship to predict 1 repetition maximum during deadlifts performed with and without lifting straps: the accuracy of six prediction models. J Strength Cond Res. 2020. https://doi.org/10.1519/jsc.0000000000003596.
Article
PubMed
Google Scholar
Williams TD, Esco MR, Fedewa MV, Bishop PA. Bench press load-velocity profiles and strength after overload and taper microcyles in male powerlifters. J Strength Cond Res. 2020. https://doi.org/10.1519/jsc.0000000000003835.
Article
PubMed
Google Scholar
Jiménez-Alonso A, García-Ramos A, Cepero M, Miras-Moreno S, Rojas FJ, Pérez-Castilla A. Velocity performance feedback during the free-weight bench press testing procedure: an effective strategy to increase the reliability and one repetition maximum accuracy prediction. J Strength Cond Res. 2020. https://doi.org/10.1519/jsc.0000000000003609.
Article
PubMed
Google Scholar
García-Ramos A, Haff GG, Pestaña-Melero FL, Pérez-Castilla A, Rojas FJ, Balsalobre-Fernández C, et al. Feasibility of the 2-point method for determining the 1-repetition maximum in the bench press exercise. Int J Sports Physiol Perform. 2018;13(4):474–81. https://doi.org/10.1123/ijspp.2017-0374.
Article
PubMed
Google Scholar
Pérez-Castilla A, Suzovic D, Domanovic A, Fernandes JFT, García-Ramos A. Validity of different velocity-based methods and repetitions-to-failure equations for predicting the 1 repetition maximum during 2 upper-body pulling exercises. J Strength Cond Res. 2019. https://doi.org/10.1519/jsc.0000000000003076.
Article
PubMed
Google Scholar
Turner A, Comfort P, McMahon J, Bishop C, Chavda S, Read P, et al. Developing powerful athletes, part 1: mechanical underpinnings. Strength Cond J. 2020;42:1. https://doi.org/10.1519/SSC.0000000000000543.
Article
Google Scholar
Turner AN, Comfort P, McMahon J, Bishop C, Chavda S, Read P, et al. Developing powerful athletes part 2: practical applications. Strength Cond J. 2021;43(1):23–31. https://doi.org/10.1519/ssc.0000000000000544.
Article
Google Scholar
Behm DG, Sale DG. Velocity specificity of resistance training. Sports Med. 1993;15(6):374–88. https://doi.org/10.2165/00007256-199315060-00003.
Article
CAS
PubMed
Google Scholar
Coyle EF, Feiring DC, Rotkis TC, Cote RW, Roby FB, Lee W, et al. Specificity of power improvements through slow and fast isokinetic training. J Appl Physiol Respir Environ Exerc Physiol. 1981;51(6):1437–42. https://doi.org/10.1152/jappl.1981.51.6.1437.
Article
CAS
PubMed
Google Scholar
Macgregor LJ, Hunter AM, Orizio C, Fairweather MM, Ditroilo M. Assessment of skeletal muscle contractile properties by radial displacement: the case for tensiomyography. Sports Med. 2018;48(7):1607–20. https://doi.org/10.1007/s40279-018-0912-6.
Article
PubMed
PubMed Central
Google Scholar
Pisot R, Narici MV, Simunic B, De Boer M, Seynnes O, Jurdana M, et al. Whole muscle contractile parameters and thickness loss during 35-day bed rest. Eur J Appl Physiol. 2008;104(2):409–14. https://doi.org/10.1007/s00421-008-0698-6.
Article
PubMed
Google Scholar
Wilson GJ, Murphy AJ, Pryor JF. Musculotendinous stiffness: its relationship to eccentric, isometric, and concentric performance. J Appl Physiol. 1994;76(6):2714–9. https://doi.org/10.1152/jappl.1994.76.6.2714.
Article
CAS
PubMed
Google Scholar
Simunič B, Degens H, Rittweger J, Narici M, Mekjavić IB, Pišot R. Noninvasive estimation of myosin heavy chain composition in human skeletal muscle. Med Sci Sports Exerc. 2011;43(9):1619–25. https://doi.org/10.1249/MSS.0b013e31821522d0.
Article
CAS
PubMed
Google Scholar
Kompf J, Arandjelović O. The sticking point in the bench press, the squat, and the deadlift: similarities and differences, and their significance for research and practice. Sports Med. 2017;47(4):631–40. https://doi.org/10.1007/s40279-016-0615-9.
Article
PubMed
Google Scholar
Andersen LL, Andersen JL, Zebis MK, Aagaard P. Early and late rate of force development: differential adaptive responses to resistance training? Scand J Med Sci Sports. 2010;20(1):e162–9. https://doi.org/10.1111/j.1600-0838.2009.00933.x.
Article
CAS
PubMed
Google Scholar
Hvid L, Aagaard P, Justesen L, Bayer ML, Andersen JL, Ørtenblad N, et al. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining. J Appl Physiol. 2010;109(6):1628–34. https://doi.org/10.1152/japplphysiol.00637.2010.
Article
PubMed
Google Scholar
Bottinelli R, Canepari M, Pellegrino MA, Reggiani C. Force-velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. J Physiol. 1996;495(Pt 2):573–86. https://doi.org/10.1113/jphysiol.1996.sp021617.
Article
CAS
PubMed
PubMed Central
Google Scholar
Methenitis S, Karandreas N, Spengos K, Zaras N, Stasinaki AN, Terzis G. Muscle fiber conduction velocity, muscle fiber composition, and power performance. Med Sci Sports Exerc. 2016;48(9):1761–71. https://doi.org/10.1249/mss.0000000000000954.
Article
PubMed
Google Scholar
Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med. 2006;36(2):133–49. https://doi.org/10.2165/00007256-200636020-00004.
Article
PubMed
Google Scholar
Folland JP, Williams AG. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145–68. https://doi.org/10.2165/00007256-200737020-00004.
Article
PubMed
Google Scholar
Semmler JG. Motor unit synchronization and neuromuscular performance. Exerc Sport Sci Rev. 2002;30(1):8–14. https://doi.org/10.1097/00003677-200201000-00003.
Article
PubMed
Google Scholar
Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93(4):1318–26. https://doi.org/10.1152/japplphysiol.00283.2002.
Article
PubMed
Google Scholar
Pareja-Blanco F, Villalba-Fernández A, Cornejo-Daza PJ, Sánchez-Valdepeñas J, González-Badillo JJ. Time course of recovery following resistance exercise with different loading magnitudes and velocity loss in the set. Sports (Basel). 2019;7(3):59. https://doi.org/10.3390/sports7030059.
Article
Google Scholar
Bartolomei S, Sadres E, Church DD, Arroyo E, Gordon JAI, Varanoske AN, et al. Comparison of the recovery response from high-intensity and high-volume resistance exercise in trained men. Eur J Appl Physiol. 2017;117(7):1287–98. https://doi.org/10.1007/s00421-017-3598-9.
Article
CAS
PubMed
Google Scholar
Watkins CM, Barillas SR, Wong MA, Archer DC, Dobbs IJ, Lockie RG, et al. Determination of vertical jump as a measure of neuromuscular readiness and fatigue. J Strength Cond Res. 2017;31(12):3305–10. https://doi.org/10.1519/jsc.0000000000002231.
Article
PubMed
Google Scholar
Claudino JG, Cronin J, Mezêncio B, McMaster DT, McGuigan M, Tricoli V, et al. The countermovement jump to monitor neuromuscular status: a meta-analysis. J Sci Med Sport. 2017;20(4):397–402. https://doi.org/10.1016/j.jsams.2016.08.011.
Article
PubMed
Google Scholar
Krieger JW. Single versus multiple sets of resistance exercise: a meta-regression. J Strength Cond Res. 2009;23(6):1890–901. https://doi.org/10.1519/JSC.0b013e3181b370be.
Article
PubMed
Google Scholar
Schoenfeld BJ, Ogborn D, Krieger JW. Dose-response relationship between weekly resistance training volume and increases in muscle mass: a systematic review and meta-analysis. J Sports Sci. 2017;35(11):1073–82. https://doi.org/10.1080/02640414.2016.1210197.
Article
PubMed
Google Scholar
Krieger JW. Single vs. multiple sets of resistance exercise for muscle hypertrophy: a meta-analysis. J Strength Cond Res. 2010;24(4):1150–9. https://doi.org/10.1519/JSC.0b013e3181d4d436.
Article
PubMed
Google Scholar
Figueiredo VC, de Salles BF, Trajano GS. Volume for muscle hypertrophy and health outcomes: the most effective variable in resistance training. Sports Med. 2018;48(3):499–505. https://doi.org/10.1007/s40279-017-0793-0.
Article
PubMed
Google Scholar
Scarpelli MC, Nóbrega SR, Santanielo N, Alvarez IF, Otoboni GB, Ugrinowitsch C, et al. Muscle hypertrophy response is affected by previous resistance training volume in trained individuals. J Strength Cond Res. 2020. https://doi.org/10.1519/jsc.0000000000003558.
Article
PubMed
Google Scholar
Dankel SJ, Mattocks KT, Jessee MB, Buckner SL, Mouser JG, Loenneke JP. Do metabolites that are produced during resistance exercise enhance muscle hypertrophy? Eur J Appl Physiol. 2017;117(11):2125–35. https://doi.org/10.1007/s00421-017-3690-1.
Article
CAS
PubMed
Google Scholar
Weakley J, McLaren S, Ramirez-Lopez C, García-Ramos A, Dalton-Barron N, Banyard H, et al. Application of velocity loss thresholds during free-weight resistance training: responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. J Sports Sci. 2019;38:1–9. https://doi.org/10.1080/02640414.2019.1706831.
Article
Google Scholar
Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010;24(10):2857–72. https://doi.org/10.1519/JSC.0b013e3181e840f3.
Article
PubMed
Google Scholar
Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol. 2019;126(1):30–43. https://doi.org/10.1152/japplphysiol.00685.2018.
Article
CAS
PubMed
Google Scholar
Morton RW, Oikawa SY, Wavell CG, Mazara N, McGlory C, Quadrilatero J, et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol. 2016;121(1):129–38. https://doi.org/10.1152/japplphysiol.00154.2016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liegnell R, Apró W, Danielsson S, Ekblom B, van Hall G, Holmberg HC, et al. Elevated plasma lactate levels via exogenous lactate infusion do not alter resistance exercise-induced signaling or protein synthesis in human skeletal muscle. Am J Physiol Endocrinol Metab. 2020;319(4):E792-e804. https://doi.org/10.1152/ajpendo.00291.2020.
Article
CAS
PubMed
Google Scholar
Cerda-Kohler H, Henríquez-Olguín C, Casas M, Jensen TE, Llanos P, Jaimovich E. Lactate administration activates the ERK1/2, mTORC1, and AMPK pathways differentially according to skeletal muscle type in mouse. Physiol Rep. 2018;6(18): e13800. https://doi.org/10.14814/phy2.13800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez-Canton M, Gallego-Selles A, Gelabert-Rebato M, Martin-Rincon M, Pareja-Blanco F, Rodriguez-Rosell D, et al. Role of CaMKII and sarcolipin in muscle adaptations to strength training with different levels of fatigue in the set. Scand J Med Sci Sports. 2021;31(1):91–103. https://doi.org/10.1111/sms.13828.
Article
PubMed
Google Scholar
van den Tillaar R, Andersen V, Saeterbakken AH. Comparison of muscle activation and kinematics during free-weight back squats with different loads. PLoS ONE. 2019;14(5): e0217044. https://doi.org/10.1371/journal.pone.0217044.
Article
CAS
PubMed
PubMed Central
Google Scholar
McBride JM, Larkin TR, Dayne AM, Haines TL, Kirby TJ. Effect of absolute and relative loading on muscle activity during stable and unstable squatting. Int J Sports Physiol Perform. 2010;5(2):177–83. https://doi.org/10.1123/ijspp.5.2.177.
Article
PubMed
Google Scholar
Król H, Gołaś A. Effect of barbell weight on the structure of the flat bench press. J Strength Cond Res. 2017;31(5):1321–37. https://doi.org/10.1519/jsc.0000000000001816.
Article
PubMed
PubMed Central
Google Scholar
Taber CB, Vigotsky A, Nuckols G, Haun CT. Exercise-induced myofibrillar hypertrophy is a contributory cause of gains in muscle strength. Sports Med. 2019;49(7):993–7. https://doi.org/10.1007/s40279-019-01107-8.
Article
PubMed
Google Scholar
Siahkouhian M, Hedayatneja M. Correlations of anthropometric and body composition variables with the performance of young elite weightlifters. J Hum Kinet. 2010. https://doi.org/10.2478/v10078-010-0040-3.
Article
Google Scholar
Blazevich AJ, Coleman DR, Horne S, Cannavan D. Anatomical predictors of maximum isometric and concentric knee extensor moment. Eur J Appl Physiol. 2009;105(6):869–78. https://doi.org/10.1007/s00421-008-0972-7.
Article
PubMed
Google Scholar
Trezise J, Collier N, Blazevich AJ. Anatomical and neuromuscular variables strongly predict maximum knee extension torque in healthy men. Eur J Appl Physiol. 2016;116(6):1159–77. https://doi.org/10.1007/s00421-016-3352-8.
Article
CAS
PubMed
Google Scholar
Lietzke MH. Relation between weightlifting totals and body weight. Science. 1956;124(3220):486–7. https://doi.org/10.1126/science.124.3220.486.
Article
CAS
PubMed
Google Scholar
Brechue WF, Abe T. The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. Eur J Appl Physiol. 2002;86(4):327–36. https://doi.org/10.1007/s00421-001-0543-7.
Article
PubMed
Google Scholar
Rodríguez-Rosell D, Yáñez-García JM, Sánchez-Medina L, Mora-Custodio R, González-Badillo JJ. Relationship between velocity loss and repetitions in reserve in the bench press and back squat exercises. J Strength Cond Res. 2019. https://doi.org/10.1519/jsc.0000000000002881.
Article
PubMed
Google Scholar
Beck M, Varner W, LeVault L, Boring J, Fahs CA. Decline in unintentional lifting velocity is both load and exercise specific. J Strength Cond Res. 2020. https://doi.org/10.1519/jsc.0000000000003786.
Article
PubMed
Google Scholar
Izquierdo M, González-Badillo JJ, Häkkinen K, Ibáñez J, Kraemer WJ, Altadill A, et al. Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. Int J Sports Med. 2006;27(9):718–24. https://doi.org/10.1055/s-2005-872825.
Article
CAS
PubMed
Google Scholar
Weakley J, Ramirez-Lopez C, McLaren S, Dalton-Barron N, Weaving D, Jones B, et al. The effects of 10%, 20%, and 30% velocity loss thresholds on kinetic, kinematic, and repetition characteristics during the barbell back squat. Int J Sports Physiol Perform. 2019;15:1–9. https://doi.org/10.1123/ijspp.2018-1008.
Article
Google Scholar
Fahs CA, Blumkaitis JC, Rossow LM. Factors related to average concentric velocity of four barbell exercises at various loads. J Strength Cond Res. 2019;33(3):597–605. https://doi.org/10.1519/jsc.0000000000003043.
Article
PubMed
Google Scholar
Fairman CM, Zourdos MC, Helms ER, Focht BC. A scientific rationale to improve resistance training prescription in exercise oncology. Sports Med. 2017;47(8):1457–65. https://doi.org/10.1007/s40279-017-0673-7.
Article
PubMed
Google Scholar
Odgers JB, Zourdos MC, Helms ER, Candow DG, Dahlstrom B, Bruno P, et al. Rating of perceived exertion and velocity relationships among trained males and females in the front squat and hexagonal bar deadlift. J Strength Cond Res. 2021;35(Suppl 1):S23-s30. https://doi.org/10.1519/jsc.0000000000003905.
Article
PubMed
Google Scholar
Helms ER, Storey A, Cross MR, Brown SR, Lenetsky S, Ramsay H, et al. RPE and velocity relationships for the back squat, bench press, and deadlift in powerlifters. J Strength Cond Res. 2017;31(2):292–7. https://doi.org/10.1519/jsc.0000000000001517.
Article
PubMed
Google Scholar
Williams TD, Tolusso DV, Fedewa MV, Esco MR. Comparison of periodized and non-periodized resistance training on maximal strength: a meta-analysis. Sports Med. 2017;47(10):2083–100. https://doi.org/10.1007/s40279-017-0734-y.
Article
PubMed
Google Scholar