Clarkson PM, Sayers SP. Etiology of exercise-induced muscle damage. Can J Appl Physiol. 1999;24(3):234–48.
Article
CAS
PubMed
Google Scholar
Howatson G, van Someren KA. The prevention and treatment of exercise-induced muscle damage. Sports Med. 2008;38(6):483–503.
Article
PubMed
Google Scholar
Peake JM, Suzuki K, Wilson G, Hordern M, Nosaka K, Mackinnon L, et al. Exercise-induced muscle damage, plasma cytokines, and markers of neutrophil activation. Med Sci Sports Exerc. 2005;37(5):737–45.
Article
CAS
PubMed
Google Scholar
Byrne C, Eston R, Edwards R. Characteristics of isometric and dynamic strength loss following eccentric exercise-induced muscle damage. Scand J Med Sci Sports. 2001;11(3):134–40.
Article
CAS
PubMed
Google Scholar
Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil. 2002;81(11 Suppl):S52–69.
Article
PubMed
Google Scholar
Peake JM, Neubauer O, Della Gatta PA, Nosaka K. Muscle damage and inflammation during recovery from exercise. J Appl Physiol (1985). 2016;122(3):559–70.
Article
CAS
Google Scholar
Pyne DB. Exercise-induced muscle damage and inflammation: a review. Aust J Sci Med Sport. 1994;26:49.
CAS
PubMed
Google Scholar
McHugh MP, Connolly DA, Eston RG, Gleim GW. Exercise-induced muscle damage and potential mechanisms for the repeated bout effect. Sports Med. 1999;27(3):157–70.
Article
CAS
PubMed
Google Scholar
Paulsen G, Mikkelsen UR, Raastad T, Peake JM. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev. 2012;18:42–97.
PubMed
Google Scholar
Connolly DA, Reed BV, McHugh MP. The repeated bout effect: does evidence for a crossover effect exist? J Sports Sci Med. 2002;1(3):80.
PubMed
PubMed Central
Google Scholar
Owens DJ, Twist C, Cobley JN, Howatson G, Close GL. Exercise-induced muscle damage: what is it, what causes it and what are the nutritional solutions? Eur J Sport Sci. 2018:1–15 [Epub ahead of print].
Sousa M, Teixeira VH, Soares J. Dietary strategies to recover from exercise-induced muscle damage. Int J Food Sci Nutr. 2014;65(2):151–63.
Article
CAS
PubMed
Google Scholar
Dupuy O, Douzi W, Theurot D, Bosquet L, Dugué B. An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue, and inflammation: a systematic review with meta-analysis. Front Physiol. 2018;9:403.
Article
PubMed
PubMed Central
Google Scholar
Bloomer RJ. The role of nutritional supplements in the prevention and treatment of resistance exercise-induced skeletal muscle injury. Sports Med. 2007;37(6):519–32.
Article
PubMed
Google Scholar
Kim J, Lee J. A review of nutritional intervention on delayed onset muscle soreness. Part I J Exerc Rehabil. 2014;10(6):349–56.
Article
PubMed
Google Scholar
Köhne J, Ormsbee M, McKune A. Supplementation strategies to reduce muscle damage and improve recovery following exercise in females: a systematic review. Sports. 2016;4(4):51.
Article
PubMed Central
Google Scholar
Köhne JL, Ormsbee MJ, McKune AJ. The effects of a multi-ingredient supplement on markers of muscle damage and inflammation following downhill running in females. J Int Soc Sports Nutr. 2016;13:44.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cobley JN, Close GL, Bailey DM, Davison GW. Exercise redox biochemistry: conceptual, methodological and technical recommendations. Redox Biol. 2017;12:540–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hutchison AT, Flieller EB, Dillon KJ, Leverett BD. Black currant nectar reduces muscle damage and inflammation following a bout of high-intensity eccentric contractions. J Diet Suppl. 2016;13(1):1–15.
Article
PubMed
Google Scholar
Lyall KA, Hurst SM, Cooney J, Jensen D, Lo K, Hurst RD, et al. Short-term blackcurrant extract consumption modulates exercise-induced oxidative stress and lipopolysaccharide-stimulated inflammatory responses. Am J Physiol Regul Integr Comp Physiol. 2009;297(1):R70–81.
Article
CAS
PubMed
Google Scholar
Coelho Rabello Lima L, Oliveira Assumpcao C, Prestes J, Sergio Denadai B. Consumption of cherries as a strategy to attenuate exercise-induced muscle damage and inflammation in humans. Nutr Hosp. 2015;32(5):1885–93.
PubMed
Google Scholar
Bowtell JL, Sumners DP, Dyer A, Fox P, Mileva KN. Montmorency cherry juice reduces muscle damage caused by intensive strength exercise. Med Sci Sports Exerc. 2011;43(8):1544–51.
Article
CAS
PubMed
Google Scholar
Connolly DAJ, McHugh MP, Padilla-Zakour OI. Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br J Sports Med. 2006;40(8):679–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levers K, Dalton R, Galvan E, Goodenough C, O’Connor A, Simbo S, et al. Effects of powdered Montmorency tart cherry supplementation on an acute bout of intense lower body strength exercise in resistance trained males. J Int Soc Sports Nutr. 2015;12(1):41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bell PG, Stevenson E, Davison GW, Howatson G. The effects of Montmorency tart cherry concentrate supplementation on recovery following prolonged, intermittent exercise. Nutrients. 2016;8(7):441.
Article
PubMed Central
CAS
Google Scholar
Bell PG, Walshe IH, Davison GW, Stevenson EJ, Howatson G. Recovery facilitation with Montmorency cherries following high-intensity, metabolically challenging exercise. Appl Physiol Nutr Metab. 2015;40(4):414–23.
Article
PubMed
Google Scholar
Brown MA, Stevenson EJ, Howatson G. Montmorency tart cherry (Prunus cerasus L.) supplementation accelerates recovery from exercise-induced muscle damage in females. Eur J Sport Sci. 2018:1–8 [Epub ahead of print].
Bell PG, Walshe IH, Davison GW, Stevenson E, Howatson G. Montmorency cherries reduce the oxidative stress and inflammatory responses to repeated days high-intensity stochastic cycling. Nutrients. 2014;6(2):829–43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Howatson G, McHugh MP, Hill JA, Brouner J, Jewell AP, van Someren KA, et al. Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports. 2010;20(6):843–52.
Article
CAS
PubMed
Google Scholar
Dimitriou L, Hill JA, Jehnali A, Dunbar J, Brouner J, McHugh MP, et al. Influence of a Montmorency cherry juice blend on indices of exercise-induced stress and upper respiratory tract symptoms following marathon running—a pilot investigation. J Int Soc Sports Nutr. 2015;12(1):22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kuehl KS, Perrier ET, Elliot DL, Chesnutt JC. Efficacy of tart cherry juice in reducing muscle pain during running: a randomized controlled trial. J Int Soc Sports Nutr. 2010;7:17.
Article
PubMed
PubMed Central
Google Scholar
Levers K, Dalton R, Galvan E, O’Connor A, Goodenough C, Simbo S, et al. Effects of powdered Montmorency tart cherry supplementation on acute endurance exercise performance in aerobically trained individuals. J Int Soc Sports Nutr. 2016;13:22.
Article
PubMed
PubMed Central
Google Scholar
Beals K, Allison KF, Damell M, Lovalekar M, Baker R, Nieman DC, et al. The effects of a tart cherry beverage on reducing exercise-induced muscle soreness. Isokinet Exerc Sci. 2017;25(1):53–63.
Article
Google Scholar
Miller PC, Bailey SP, Barnes ME, Derr SJ, Hall EE. The effects of protease supplementation on skeletal muscle function and DOMS following downhill running. J Sports Sci. 2004;22(4):365–72.
Article
PubMed
Google Scholar
Buford TW, Cooke MB, Redd LL, Hudson GM, Shelmadine BD, Willoughby DS. Protease supplementation improves muscle function after eccentric exercise. Med Sci Sports Exerc. 2009;41(10):1908–14.
Article
CAS
PubMed
Google Scholar
Beck TW, Housh TJ, Johnson GO, Schmidt RJ, Housh DJ, Coburn JW, et al. Effects of a protease supplement on eccentric exercise-induced markers of delayed-onset muscle soreness and muscle damage. J Strength Cond Res. 2007;21(3):661–7.
PubMed
Google Scholar
Müller S, März R, Schmolz M, Drewelow B, Eschmann K, Meiser P. Placebo-controlled randomized clinical trial on the immunomodulating activities of low-and high-dose bromelain after oral administration–new evidence on the antiinflammatory mode of action of bromelain. Phytother Res. 2013;27(2):199–204.
Article
PubMed
CAS
Google Scholar
Udani JK, Singh BB, Singh VJ, Sandoval E. BounceBack™ capsules for reduction of DOMS after eccentric exercise: a randomized, double-blind, placebo-controlled, crossover pilot study. J Int Soc Sports Nutr. 2009;6:14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Trombold JR, Barnes JN, Critchley L, Coyle EF. Ellagitannin consumption improves strength recovery 2–3 d after eccentric exercise. Med Sci Sports Exerc. 2010;42(3):493–8.
Article
CAS
PubMed
Google Scholar
Trombold JR, Reinfeld AS, Casler JR, Coyle EF. The effect of pomegranate juice supplementation on strength and soreness after eccentric exercise. J Strength Cond Res. 2011;25(7):1782–8.
Article
PubMed
Google Scholar
Machin DR, Christmas KM, Chou T-H, Hill SC, Van Pelt DW, Trombold JR, et al. Effects of differing dosages of pomegranate juice supplementation after eccentric exercise. Physiol J. 2014;2014. [Epub].
Ammar A, Turki M, Chtourou H, Hammouda O, Trabelsi K, Kallel C, et al. Pomegranate supplementation accelerates recovery of muscle damage and soreness and inflammatory markers after a weightlifting training session. PLoS One. 2016;11(10):e0160305.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tarazona-Díaz MP, Alacid F, Carrasco M, Martínez I, Aguayo E. Watermelon juice: potential functional drink for sore muscle relief in athletes. J Agric Food Chem. 2013;61(31):7522–8.
Article
PubMed
CAS
Google Scholar
Martínez-Sánchez A, Ramos-Campo DJ, Fernández-Lobato B, Rubio-Arias JA, Alacid F, Aguayo E. Biochemical, physiological, and performance response of a functional watermelon juice enriched in L-citrulline during a half-marathon race. Food Nutr Res. 2017;61(1):1330098.
Article
PubMed
PubMed Central
Google Scholar
Martinez-Sanchez A, Alacid F, Rubio-Arias JA, Fernandez-Lobato B, Ramos-Campo DJ, Aguayo E. Consumption of watermelon juice enriched in l-Citrulline and pomegranate Ellagitannins enhanced metabolism during physical exercise. J Agric Food Chem. 2017;65(22):4395–404.
Article
CAS
PubMed
Google Scholar
Pérez-Guisado J, Jakeman PM. Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. J Strength Cond Res. 2010;24(5):1215–22.
Article
PubMed
Google Scholar
Shanely RA, Nieman DC, Perkins-Veazie P, Henson DA, Meaney MP, Knab AM, et al. Comparison of watermelon and carbohydrate beverage on exercise-induced alterations in systemic inflammation, immune dysfunction, and plasma antioxidant capacity. Nutrients. 2016;8(8):518.
Article
PubMed Central
CAS
Google Scholar
da Silva DK, Jacinto JL, de Andrade WB, Roveratti MC, Estoche JM, Balvedi MCW, et al. Citrulline malate does not improve muscle recovery after resistance exercise in untrained young adult men. Nutrients. 2017;9(10):1132.
Article
PubMed Central
CAS
Google Scholar
Chappell AJ, Allwood DM, Johns R, Brown S, Sultana K, Anand A, et al. Citrulline malate supplementation does not improve German volume training performance or reduce muscle soreness in moderately trained males and females. J Int Soc Sports Nutr. 2018;15(1):42.
Article
PubMed
PubMed Central
Google Scholar
Clifford T, Bell O, West DJ, Howatson G, Stevenson EJ. The effects of beetroot juice supplementation on indices of muscle damage following eccentric exercise. Eur J Appl Physiol. 2016;116(2):353–62.
Article
CAS
PubMed
Google Scholar
Clifford T, Howatson G, West DJ, Stevenson EJ. Beetroot juice is more beneficial than sodium nitrate for attenuating muscle pain after strenuous eccentric-bias exercise. Appl Physiol Nutr Metab. 2017;42(11):1185–91.
Article
CAS
PubMed
Google Scholar
Clifford T, Berntzen B, Davison GW, West DJ, Howatson G, Stevenson EJ. Effects of beetroot juice on recovery of muscle function and performance between bouts of repeated Sprint exercise. Nutrients. 2016;8(8):506.
Article
PubMed Central
CAS
Google Scholar
Montenegro CF, Kwong DA, Minow ZA, Davis BA, Lozada CF, Casazza GA. Betalain-rich concentrate supplementation improves exercise performance and recovery in competitive triathletes. Appl Physiol Nutr Metab. 2017;42(2):166–72.
Article
CAS
PubMed
Google Scholar
Clifford T, Allerton DM, Brown MA, Harper L, Horsburgh S, Keane KM, et al. Minimal muscle damage after a marathon and no influence of beetroot juice on inflammation and recovery. Appl Physiol Nutr Metab. 2017;42(3):263–70.
Article
CAS
PubMed
Google Scholar
Bloomer RJ, Fry A, Schilling B, Chiu L, Hori N, Weiss L. Astaxanthin supplementation does not attenuate muscle injury following eccentric exercise in resistance-trained men. Int J Sport Nutr Exerc Metab. 2005;15(4):401–12.
Article
CAS
PubMed
Google Scholar
Djordjevic B, Baralic I, Kotur-Stevuljevic J, Stefanovic A, Ivanisevic J, Radivojevic N, et al. Effect of astaxanthin supplementation on muscle damage and oxidative stress markers in elite young soccer players. J Sports Med Phys Fitness. 2012;52(4):382–92.
CAS
PubMed
Google Scholar
Paris D, Beaulieu-Abdelahad D, Abdullah L, Bachmeier C, Ait-Ghezala G, Reed J, et al. Anti-inflammatory activity of anatabine via inhibition of STAT3 phosphorylation. Eur J Pharmacol. 2013;698(1–3):145–53.
Article
CAS
PubMed
Google Scholar
Jenkins ND, Housh TJ, Cochrane KC, Bergstrom HC, Traylor DA, Lewis RW Jr, et al. Effects of anatabine and unilateral maximal eccentric isokinetic muscle actions on serum markers of muscle damage and inflammation. Eur J Pharmacol. 2014;728:161–6.
Article
CAS
PubMed
Google Scholar
Jenkins NDM, Housh TJ, Johnson GO, Traylor DA, Bergstrom HC, Cochrane KC, et al. The effects of anatabine on non-invasive indicators of muscle damage: a randomized, double-blind, placebo-controlled, crossover study. J Int Soc Sports Nutr. 2013;10(1):33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jówko E, Długołęcka B, Makaruk B, Cieśliński I. The effect of green tea extract supplementation on exercise-induced oxidative stress parameters in male sprinters. Eur J Nutr. 2015;54(5):783–91.
Article
PubMed
CAS
Google Scholar
Kerksick CM, Kreider RB, Willoughby DS. Intramuscular adaptations to eccentric exercise and antioxidant supplementation. Amino Acids. 2010;39(1):219–32.
Article
CAS
PubMed
Google Scholar
Panza VS, Wazlawik E, Ricardo Schutz G, Comin L, Hecht KC, da Silva EL. Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition. 2008;24(5):433–42.
Article
CAS
PubMed
Google Scholar
Hyldahl RD, Chen TC, Nosaka K. Mechanisms and mediators of the skeletal muscle repeated bout effect. Exerc Sport Sci Rev. 2017;45(1):24–33.
Article
PubMed
Google Scholar
Jowko E, Sacharuk J, Balasinska B, Ostaszewski P, Charmas M, Charmas R. Green tea extract supplementation gives protection against exercise-induced oxidative damage in healthy men. Nutr Res. 2011;31(11):813–21.
Article
CAS
PubMed
Google Scholar
Herrlinger KA, Chirouzes DM, Ceddia MA. Supplementation with a polyphenolic blend improves post-exercise strength recovery and muscle soreness. Food Nutr Res. 2015;59:30034. https://doi.org/10.3402/fnr.v59.30034.
Article
CAS
PubMed
Google Scholar
Jowko E, Sacharuk J, Balasinska B, Wilczak J, Charmas M, Ostaszewski P, et al. Effect of a single dose of green tea polyphenols on the blood markers of exercise-induced oxidative stress in soccer players. Int J Sport Nutr Exerc Metab. 2012;22(6):486–96.
Article
CAS
PubMed
Google Scholar
Jajtner AR, Hoffman JR, Townsend JR, Beyer KS, Varanoske AN, Church DD, et al. The effect of polyphenols on cytokine and granulocyte response to resistance exercise. Physiol Rep. 2016;4(24):e13058.
Article
PubMed
PubMed Central
CAS
Google Scholar
McFarlin BK, Venable AS, Henning AL, Sampson JNB, Pennel K, Vingren JL, et al. Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA Clinical. 2016;5:72–8.
Article
PubMed
PubMed Central
Google Scholar
Drobnic F, Riera J, Appendino G, Togni S, Franceschi F, Valle X, et al. Reduction of delayed onset muscle soreness by a novel curcumin delivery system (Meriva®): a randomised, placebo-controlled trial. J Int Soc Sports Nutr. 2014;11:31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nicol LM, Rowlands DS, Fazakerly R, Kellett J. Curcumin supplementation likely attenuates delayed onset muscle soreness (DOMS). Eur J Appl Physiol. 2015;115(8):1769–77.
Article
CAS
PubMed
Google Scholar
Tanabe Y, Maeda S, Akazawa N, Zempo-Miyaki A, Choi Y, Ra S-G, et al. Attenuation of indirect markers of eccentric exercise-induced muscle damage by curcumin. Eur J Appl Phys. 2015;115(9):1949–57.
Article
CAS
Google Scholar
Wilson PB. Ginger (Zingiber officinale) as an analgesic and ergogenic aid in sport: a systemic review. J Strength Cond Res. 2015;29(10):2980–95.
Article
PubMed
Google Scholar
Black CD, Herring MP, Hurley DJ, O'Connor PJ. Ginger (Zingiber officinale) reduces muscle pain caused by eccentric exercise. J Pain. 2010;11(9):894–903.
Article
PubMed
Google Scholar
Black CD, O'Connor PJ. Acute effects of dietary ginger on muscle pain induced by eccentric exercise. Phytother Res. 2010;24(11):1620–6.
Article
PubMed
Google Scholar
Matsumura MD, Zavorsky GS, Smoliga JM. The effects of pre-exercise ginger supplementation on muscle damage and delayed onset muscle soreness. Phytother Res. 2015;29(6):887–93.
Article
PubMed
Google Scholar
Wilson PB, Fitzgerald JS, Rhodes GS, Lundstrom CJ, Ingraham SJ. Effectiveness of ginger root (Zingiber officinale) on running-induced muscle soreness and function: a pilot study. Int J Athl Ther Train. 2015;20(6):44–50.
Article
Google Scholar
Attele AS, Wu JA, Yuan CS, et al. Biochem Pharmacol. 1999;58(11):1685–93.
Article
CAS
PubMed
Google Scholar
Hsu C-C, Ho M-C, Lin L-C, Su B, Hsu M-C. American ginseng supplementation attenuates creatine kinase level induced by submaximal exercise in human beings. World J Gastroenterol. 2005;11(34):5327–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jung HL, Kwak HE, Kim SS, Kim YC, Lee CD, Byurn HK, et al. Effects of Panax ginseng supplementation on muscle damage and inflammation after uphill treadmill running in humans. Am J Chin Med. 2011;39(3):441–50.
Article
PubMed
Google Scholar
Pumpa KL, Fallon KE, Bensoussan A, Papalia S. The effects of Panax notoginseng on delayed onset muscle soreness and muscle damage in well-trained males: a double blind randomised controlled trial. Complement Ther Med. 2013;21(3):131–40.
Article
PubMed
Google Scholar
Caldwell LK, DuPont WH, Beeler MK, Post EM, Barnhart EC, Hardesty VH, et al. The effects of a Korean ginseng, GINST15, on perceptual effort, psychomotor performance, and physical performance in men and women. J Sports Sci Med. 2018;17(1):92–100.
PubMed
PubMed Central
Google Scholar
Roengrit T, Wannanon P, Prasertsri P, Kanpetta Y, Sripanidkulchai B-O, Leelayuwat N. Antioxidant and anti-nociceptive effects of Phyllanthus amarus on improving exercise recovery in sedentary men: a randomized crossover (double-blind) design. J Int Soc Sports Nutr. 2014;11(1):9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Roengrit T, Wannanon P, Prasertsri P, Kanpetta Y, Sripanidkulchai B-O, Wattanathorn J, et al. Antioxidant effect of Phyllanthus amarus after moderate-intensity exercise in sedentary males: a randomized crossover (double-blind) study. J Phys Ther Sci. 2015;27(4):1181–6.
Article
PubMed
PubMed Central
Google Scholar
Jówko E, Sadowski J, Długołęcka B, Gierczuk D, Opaszowski B, Cieśliński I. Effects of Rhodiola rosea supplementation on mental performance, physical capacity, and oxidative stress biomarkers in healthy men. J Sport Health Sci. 2016;7:473–80.
Article
PubMed
PubMed Central
Google Scholar
Abidov M, Grachev S, Seifulla RD, Ziegenfuss TN. Extract of Rhodiola rosea radix reduces the level of C-reactive protein and creatinine kinase in the blood. Bull Exp Biol Med. 2004;138(1):63–4.
Article
CAS
PubMed
Google Scholar
Parisi A, Tranchita E, Duranti G, Ciminelli E, Quaranta F, Ceci R et al. Effects of chronic Rhodiola rosea supplementation on sport performance and antioxidant capacity in trained male: preliminary results. 2010.
Google Scholar
Shanely RA, Nieman DC, Zwetsloot KA, Knab AM, Imagita H, Luo B, et al. Evaluation of Rhodiola rosea supplementation on skeletal muscle damage and inflammation in runners following a competitive marathon. Brain Behav Immun. 2014;39:204–10.
Article
PubMed
Google Scholar
Foure A, Bendahan D. Is branched-chain amino acids supplementation an efficient nutritional strategy to alleviate skeletal muscle damage? A systematic review. Nutrients. 2017;9(10):1047.
Article
PubMed Central
CAS
Google Scholar
Deminice R, Rosa FT, Franco GS, Jordao AA, de Freitas EC. Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition. 2013;29(9):1127–32.
Article
CAS
PubMed
Google Scholar
Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, et al. International society of sports nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr. 2017;14(1):18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rawson ES, Gunn B, Clarkson PM. The effects of creatine supplementation on exercise-induced muscle damage. J Strength Cond Res. 2001;15(2):178–84.
CAS
PubMed
Google Scholar
Rawson ES, Conti MP, Miles MP. Creatine supplementation does not reduce muscle damage or enhance recovery from resistance exercise. J Strength Cond Res. 2007;21(4):1208–13.
PubMed
Google Scholar
Machado M, Pereira R, Sampaio-Jorge F, Knifis F, Hackney A. Creatine supplementation: effects on blood creatine kinase activity responses to resistance exercise and creatine kinase activity measurement. Braz J Pharm Sci. 2009;45(4):751–7.
Article
CAS
Google Scholar
McKinnon NB, Graham MT, Tiidus PM. Effect of creatine supplementation on muscle damage and repair following eccentrically-induced damage to the elbow flexor muscles. J Sports Sci Med. 2012;11(4):653–9.
PubMed
PubMed Central
Google Scholar
Rosene J, Matthews T, Ryan C, Belmore K, Bergsten A, Blaisdell J, et al. Short and longer-term effects of creatine supplementation on exercise induced muscle damage. J Sports Sci Med. 2009;8(1):89–96.
PubMed
PubMed Central
Google Scholar
Cooke MB, Rybalka E, Williams AD, Cribb PJ, Hayes A. Creatine supplementation enhances muscle force recovery after eccentrically-induced muscle damage in healthy individuals. J Int Soc Sports Nutr. 2009;6:13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Veggi KF, Machado M, Koch AJ, Santana SC, Oliveira SS, Stec MJ. Oral creatine supplementation augments the repeated bout effect. Int J Sport Nutr Exerc Metab. 2013;23(4):378–87.
Article
CAS
Google Scholar
Santos RV, Bassit RA, Caperuto EC, Costa Rosa LF. The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30km race. Life Sci. 2004;75(16):1917–24.
Article
CAS
PubMed
Google Scholar
Bassit RA, Curi R, Costa Rosa LF. Creatine supplementation reduces plasma levels of pro-inflammatory cytokines and PGE2 after a half-ironman competition. Amino Acids. 2008;35(2):425–31.
Article
CAS
PubMed
Google Scholar
Bassit RA, Pinheiro CH, Vitzel KF, Sproesser AJ, Silveira LR, Curi R. Effect of short-term creatine supplementation on markers of skeletal muscle damage after strenuous contractile activity. Eur J Appl Physiol. 2010;108(5):945–55.
Article
CAS
PubMed
Google Scholar
Wilson JM, Lowery RP, Joy JM, Walters JA, Baier SM, Fuller JC, et al. β-Hydroxy-β-methylbutyrate free acid reduces markers of exercise-induced muscle damage and improves recovery in resistance-trained men. Br J Nutr. 2013;110(3):538–44.
Article
CAS
PubMed
Google Scholar
Knitter AE, Panton L, Rathmacher JA, Petersen A, Sharp R. Effects of beta-hydroxy-beta-methylbutyrate on muscle damage after a prolonged run. J Appl Physiol (1985). 2000;89(4):1340–4.
Article
CAS
Google Scholar
van Someren KA, Edwards AJ, Howatson G. Supplementation with beta-hydroxy-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) reduces signs and symptoms of exercise-induced muscle damage in man. Int J Sport Nutr Exerc Metab. 2005;15(4):413–24.
Article
PubMed
Google Scholar
Nunan D, Howatson G, van Someren KA. Exercise-induced muscle damage is not attenuated by beta-hydroxy-beta-methylbutyrate and alpha-ketoisocaproic acid supplementation. J Strength Cond Res. 2010;24(2):531–7.
Article
PubMed
Google Scholar
Paddon-Jones D, Keech A, Jenkins D. Short-term beta-hydroxy-beta-methylbutyrate supplementation does not reduce symptoms of eccentric muscle damage. Int J Sport Nutr Exerc Metab. 2001;11(4):442–50.
Article
CAS
PubMed
Google Scholar
Wilson JM, Kim JS, Lee SR, Rathmacher JA, Dalmau B, Kingsley JD, et al. Acute and timing effects of beta-hydroxy-beta-methylbutyrate (HMB) on indirect markers of skeletal muscle damage. Nutr Metab (Lond). 2009;6:6.
Article
CAS
Google Scholar
Street B, Byrne C, Eston R. Glutamine supplementation in recovery from eccentric exercise attenuates strength loss and muscle soreness. J Exerc Sci Fit. 2011;9(2):116–22.
Article
Google Scholar
Legault Z, Bagnall N, Kimmerly DS. The influence of oral L-glutamine supplementation on muscle strength recovery and soreness following unilateral knee extension eccentric exercise. Int J Sport Nutr Exerc Metab. 2015;25(5):417–26.
Article
PubMed
Google Scholar
Nakhostin-Roohi B, Javanamani R, Zardoost N, Ramazanzadeh R. Influence of glutamine supplementation on muscle damage and oxidative stress indices following 14km running. Bimonthly J Hormozgan Univ Med Sci. 2016;20(5):323–31.
Google Scholar
Nia FR, Farzaneh E, Damirchi A, Majlan AS. Effect of L-glutamine supplementation on electromyographic activity of the quadriceps muscle injured by eccentric exercise. Iran J Basic Med Sci. 2013;16(6):808.
Google Scholar
Pasiakos SM, Lieberman HR, McLellan TM. Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: a systematic review. Sports Med. 2014;44(5):655–70.
Article
PubMed
Google Scholar
De Carvalho FG, Galan BSM, Santos PC, Pritchett K, Pfrimer K, Ferriolli E, et al. Taurine: a potential ergogenic aid for preventing muscle damage and protein catabolism and decreasing oxidative stress produced by endurance exercise. Front Physiol. 2017;8:710.
Article
PubMed
PubMed Central
Google Scholar
da Silva LA, Tromm CB, Bom KF, Mariano I, Pozzi B, da Rosa GL, et al. Effects of taurine supplementation following eccentric exercise in young adults. Appl Physiol Nutr Metab. 2013;39(1):101–4.
Article
PubMed
CAS
Google Scholar
Ra S-G, Miyazaki T, Ishikura K, Nagayama H, Komine S, Nakata Y, et al. Combined effect of branched-chain amino acids and taurine supplementation on delayed onset muscle soreness and muscle damage in high-intensity eccentric exercise. J Int Soc Sports Nutr. 2013;10(1):51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ra SG, Akazawa N, Choi Y, Matsubara T, Oikawa S, Kumagai H, et al. Taurine supplementation reduces eccentric exercise-induced delayed onset muscle soreness in young men. Adv Exp Med Biol. 2015;803:765–72.
Article
CAS
PubMed
Google Scholar
McLeay Y, Stannard S, Barnes M. The effect of taurine on the recovery from eccentric exercise-induced muscle damage in males. Antioxidants. 2017;6(4):79.
Article
PubMed Central
CAS
Google Scholar
McGinley C, Shafat A, Donnelly AE. Does antioxidant vitamin supplementation protect against muscle damage? Sports Med. 2009;39(12):1011–32.
Article
PubMed
Google Scholar
Owens DJ, Sharples AP, Polydorou I, Alwan N, Donovan T, Tang J, et al. A systems-based investigation into vitamin D and skeletal muscle repair, regeneration, and hypertrophy. Am J Physiol Endocrinol Metab. 2015;309(12):E1019–31.
Article
CAS
PubMed
Google Scholar
Heaton LE, Davis JK, Rawson ES, Nuccio RP, Witard OC, Stein KW, et al. Selected in-season nutritional strategies to enhance recovery for team sport athletes: a practical overview. Sports Med. 2017;47(11):2201–18.
Article
PubMed
PubMed Central
Google Scholar
Shuler FD, Wingate MK, Moore GH, Giangarra C. Sports health benefits of vitamin D. Sports Health. 2012;4(6):496–501.
Article
PubMed
PubMed Central
Google Scholar
Larson-Meyer DE, Willis KS. Vitamin D and athletes. Curr Sports Med Rep. 2010;9(4):220–6.
Article
PubMed
Google Scholar
Hamilton B. Vitamin D and human skeletal muscle. Scand J Med Sci Sports. 2010;20(2):182–90.
CAS
PubMed
PubMed Central
Google Scholar
Barker T, Henriksen VT, Martins TB, Hill HR, Kjeldsberg CR, Schneider ED, et al. Higher serum 25-hydroxyvitamin D concentrations associate with a faster recovery of skeletal muscle strength after muscular injury. Nutrients. 2013;5(4):1253–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ring SM, Dannecker EA, Peterson CA. Vitamin D status is not associated with outcomes of experimentally-induced muscle weakness and pain in young, healthy volunteers. J Nutr Metab. 2010;2010. [Epub].
Barker T, Schneider ED, Dixon BM, Henriksen VT, Weaver LK. Supplemental vitamin D enhances the recovery in peak isometric force shortly after intense exercise. Nutr Metab. 2013;10:69.
Article
CAS
Google Scholar
Shanely RA, Nieman DC, Knab AM, Gillitt ND, Meaney MP, Jin F, et al. Influence of vitamin D mushroom powder supplementation on exercise-induced muscle damage in vitamin D insufficient high school athletes. J Sports Sci. 2014;32(7):670–9.
Article
PubMed
Google Scholar
Nieman DC, Gillitt ND, Shanely RA, Dew D, Meaney MP, Luo B. Vitamin D(2) supplementation amplifies eccentric exercise-induced muscle damage in NASCAR pit crew athletes. Nutrients. 2014;6(1):63–75.
Article
CAS
Google Scholar
Tartibian B, Maleki BH, Abbasi A. The effects of ingestion of omega-3 fatty acids on perceived pain and external symptoms of delayed onset muscle soreness in untrained men. Clin J Sport Med. 2009;19(2):115–9.
Article
PubMed
Google Scholar
Philpott JD, Donnelly C, Walshe IH, Dick J, Galloway SDR, Tipton KD, et al. Adding fish oil to whey protein, leucine and carbohydrate over a 6 week supplementation period attenuates muscle soreness following eccentric exercise in competitive soccer players. Int J Sport Nutr Exerc Metab. 2018;28(1)26–36.
Tsuchiya Y, Yanagimoto K, Nakazato K, Hayamizu K, Ochi E. Eicosapentaenoic and docosahexaenoic acids-rich fish oil supplementation attenuates strength loss and limited joint range of motion after eccentric contractions: a randomized, double-blind, placebo-controlled, parallel-group trial. Eur J Appl Phys. 2016;116:1179–88.
Article
CAS
Google Scholar
Corder KE, Newsham KR, McDaniel JL, Ezekiel UR, Weiss EP. Effects of short-term docosahexaenoic acid supplementation on markers of inflammation after eccentric strength exercise in women. J Sports Sci Med. 2016;15(1):176–83.
PubMed
PubMed Central
Google Scholar
Tinsley GM, Gann JJ, Huber SR, Andre TL, La Bounty PM, Bowden RG, et al. Effects of fish oil supplementation on Postresistance exercise muscle soreness. J Diet Suppl. 2017;14(1):89–100.
Jouris KB, McDaniel JL, Weiss EP. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. J Sports Sci Med. 2011;10(3):432–8.
PubMed
PubMed Central
Google Scholar
Lembke P, Capodice J, Hebert K, Swenson T. Influence of omega-3 (N3) index on performance and wellbeing in young adults after heavy eccentric exercise. J Sports Sci Med. 2014;13(1):151–6.
PubMed
PubMed Central
Google Scholar
Mickleborough TD, Sinex JA, Platt D, Chapman RF, Hirt M. The effects PCSO-524®, a patented marine oil lipid and omega-3 PUFA blend derived from the New Zealand green lipped mussel (Perna canaliculus), on indirect markers of muscle damage and inflammation after muscle damaging exercise in untrained men: a randomized, placebo controlled trial. J Int Soc Sports Nutr. 2015;12:10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lenn J, Uhl T, Mattacola C, Boissonneault G, Yates J, Ibrahim W, et al. The effects of fish oil and isoflavones on delayed onset muscle soreness. Med Sci Sports Exerc. 2002;34(10):1605–13.
Article
CAS
PubMed
Google Scholar
Gray P, Chappell A, Jenkinson AM, Thies F, Gray SR. Fish oil supplementation reduces markers of oxidative stress but not muscle soreness after eccentric exercise. Int J Sport Nutr Exerc Metab. 2014;24(2):206–14.
Article
CAS
PubMed
Google Scholar
Bloomer RJ, Larson DE, Fisher-Wellman KH, Galpin AJ, Schilling BK. Effect of eicosapentaenoic and docosahexaenoic acid on resting and exercise-induced inflammatory and oxidative stress biomarkers: a randomized, placebo controlled, cross-over study. Lipids Health Dis. 2009;8:36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Houghton D, Onambele GL. Can a standard dose of eicosapentaenoic acid (EPA) supplementation reduce the symptoms of delayed onset of muscle soreness? J Int Soc Sports Nutr. 2012;9:2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baratloo A, Rouhipour A, Forouzanfar MM, Safari S, Amiri M, Negida A. The role of caffeine in pain management: a brief literature review. Anesth Pain Med. 2016;6(3):e33193.
Article
PubMed
PubMed Central
Google Scholar
Machado M, Antunes WD, Tamy ALM, Azevedo PG, Barreto JG, Hackney AC. Effect of a single dose of caffeine supplementation and intermittent-interval exercise on muscle damage markers in soccer players. J Exerc Sci Fit. 2009;7(2):91–7.
Article
Google Scholar
Machado M, Breder AC, Ximenes MC, Simões JR, Vigo JFF. Caffeine supplementation and muscle damage in soccer players. Braz J Pharm Sci. 2009;45(2):257–61.
Article
CAS
Google Scholar
Machado M, Vigo J, Breder A, Simoes J, Ximenes M, Hackney A. Effect of short term caffeine supplementation and intermittent exercise on muscle damage markers. Biol Sport. 2009;26(1):3.
Article
Google Scholar
Machado M, Koch AJ, Willardson JM, dos Santos FC, Curty VM, Pereira LN. Caffeine does not augment markers of muscle damage or leukocytosis following resistance exercise. Int J Sports Physiol Perform. 2010;5(1):18–26.
Article
PubMed
Google Scholar
Vimercatti BNS, Zovico BPV, Carvalho BAS, Barreto BJG, Machado AM. Two doses of caffeine do not increase the risk of exercise-induced muscle damage or leukocytosis. Phys Edu Sport. 2008;19:1.0.
Google Scholar
Hurley CF, Hatfield DL, Riebe DA. The effect of caffeine ingestion on delayed onset muscle soreness. J Strength Cond Res. 2013;27(11):3101–9.
PubMed
Google Scholar
Caldwell AR, Tucker MA, Butts CL, McDermott BP, Vingren JL, Kunces LJ, et al. Effect of caffeine on perceived soreness and functionality following an endurance cycling event. J Strength Cond Res. 2017;31(3):638–43.
Article
PubMed
Google Scholar
Withee ED, Tippens KM, Dehen R, Tibbitts D, Hanes D, Zwickey H. Effects of Methylsulfonylmethane (MSM) on exercise-induced oxidative stress, muscle damage, and pain following a half-marathon: a double-blind, randomized, placebo-controlled trial. J Int Soc Sports Nutr. 2017;14:24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barmaki S, Bohlooli S, Khoshkhahesh F, Nakhostin-Roohi B. Effect of methylsulfonylmethane supplementation on exercise-induced muscle damage and total antioxidant capacity. J Sports Med Phys Fitness. 2012;52(2):170–4.
CAS
PubMed
Google Scholar
van der Merwe M, Bloomer RJ. The influence of methylsulfonylmethane on inflammation-associated cytokine release before and following strenuous exercise. J Sports Med. 2016;2016. [Epub].
Harty PS, Zabriskie HA, Erickson JL, Molling PE, Kerksick CM, Jagim AR. Multi-ingredient pre-workout supplements, safety implications, and performance outcomes: a brief review. J Int Soc Sports Nut. 2018;15(1):41.
Article
Google Scholar
Ormsbee MJ, Ward EG, Bach CW, Arciero PJ, McKune AJ, Panton LB. The impact of a pre-loaded multi-ingredient performance supplement on muscle soreness and performance following downhill running. J Int Soc Sports Nutr. 2015;12(1):2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Keen DA, Constantopoulos E, Konhilas JP. The impact of post-exercise hydration with deep-ocean mineral water on rehydration and exercise performance. J Int Soc Sports Nutr. 2016;13(1):17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hou C-W, Tsai Y-S, Jean W-H, Chen C-Y, Ivy JL, Huang C-Y, et al. Deep ocean mineral water accelerates recovery from physical fatigue. J Int Soc Sports Nutr. 2013;10:7.
Article
PubMed
PubMed Central
Google Scholar
Stasiule L, Capkauskiene S, Vizbaraite D, Stasiulis A. Deep mineral water accelerates recovery after dehydrating aerobic exercise: a randomized, double-blind, placebo-controlled crossover study. J Int Soc Sports Nutr. 2014;11:34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Borsa PA, Kaiser KL, Martin JS. Oral consumption of electrokinetically modified water attenuates muscle damage and improves postexercise recovery. J Appl Physiol (1985). 2013;114(12):1736–42.
Article
CAS
Google Scholar
Borsa PA, Larkin-Kaiser KA. Daily controlled consumption of an Electrokinetically modified water alters the fatigue response as a result of strenuous resistance exercise. Physiol J. 2014;2014. [Epub].
Schutzer KA, Graves BS. Barriers and motivations to exercise in older adults. Prev Med. 2004;39(5):1056–61.
Article
PubMed
Google Scholar
McMahon NF, Leveritt MD, Pavey TG. The effect of dietary nitrate supplementation on endurance exercise performance in healthy adults: a systematic review and meta-analysis. Sports Med. 2017;47(4):735–56.
Article
PubMed
Google Scholar
Stevenson DE, Hurst RD. Polyphenolic phytochemicals—just antioxidants or much more? Cell Mol Life Sci. 2007;64(22):2900–16.
Article
CAS
PubMed
Google Scholar
Arent SM, Senso M, Golem DL, McKeever KH. The effects of theaflavin-enriched black tea extract on muscle soreness, oxidative stress, inflammation, and endocrine responses to acute anaerobic interval training: a randomized, double-blind, crossover study. J Int Soc Sports Nutr. 2010;7:11.
Article
PubMed
PubMed Central
CAS
Google Scholar
McLeay Y, Barnes MJ, Mundel T, Hurst SM, Hurst RD, Stannard SR. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. J Int Soc Sports Nutr. 2012;9(1):19.
Article
PubMed
PubMed Central
Google Scholar
Braun WA, Flynn MG, Armstrong WJ, Jacks DD. The effects of chondroitin sulfate supplementation on indices of muscle damage induced by eccentric arm exercise. J Sports Med Phys Fitness. 2005;45(4):553–60.
CAS
PubMed
Google Scholar
Nieman DC, Goodman CL, Capps CR, Shue ZL, Arnot R. Influence of 2-weeks ingestion of high chlorogenic acid coffee on mood state, performance, and postexercise inflammation and oxidative stress: a randomized, placebo-controlled trial. Int J Sport Nutr Exerc Metab. 2018;28(1):55–65.
Article
PubMed
Google Scholar
Dannecker EA, Liu Y, Rector RS, Thomas TR, Sayers SP, Leeuwenburgh C, et al. The effect of fasting on indicators of muscle damage. Exp Gerontol. 2013;48(10):1101–6.
Article
CAS
PubMed
Google Scholar
Su QS, Tian Y, Zhang JG, Zhang H. Effects of allicin supplementation on plasma markers of exercise-induced muscle damage, IL-6 and antioxidant capacity. Eur J Appl Physiol. 2008;103(3):275–83.
Article
CAS
PubMed
Google Scholar
Mero AA, Ojala T, Hulmi JJ, Puurtinen R, Karila TA, Seppälä T. Effects of alfa-hydroxy-isocaproic acid on body composition, DOMS and performance in athletes. J Int Soc Sports Nutr. 2010;7(1):1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Buchwald-Werner S, Naka I, Wilhelm M, Schütz E, Schoen C, Reule C. Effects of lemon verbena extract (Recoverben®) supplementation on muscle strength and recovery after exhaustive exercise: a randomized, placebo-controlled trial. J Int Soc Sports Nutr. 2018;15(1):5.
Article
PubMed
PubMed Central
Google Scholar
Nishizawa M, Hara T, Miura T, Fujita S, Yoshigai E, Ue H, et al. Supplementation with a flavanol-rich lychee fruit extract influences the inflammatory status of young athletes. Phytother Res. 2011;25(10):1486–93.
Article
CAS
PubMed
Google Scholar
Panza VP, Diefenthaeler F, Tamborindeguy AC, Camargo Cde Q, de Moura BM, Brunetta HS, et al. Effects of mate tea consumption on muscle strength and oxidative stress markers after eccentric exercise. Br J Nutr. 2016;115(8):1370–8.
Article
CAS
PubMed
Google Scholar
Miranda-Vilela AL, Pereira LC, Goncalves CA, Grisolia CK. Pequi fruit (Caryocar brasiliense Camb.) pulp oil reduces exercise-induced inflammatory markers and blood pressure of male and female runners. Nutr Res. 2009;29(12):850–8.
Article
CAS
PubMed
Google Scholar
Miranda-Vilela AL, Ribeiro IF, Grisolia CK. Association between interleukin 6-174 G/C promoter gene polymorphism and runners’ responses to the dietary ingestion of antioxidant supplementation based on Pequi (Caryocar brasiliense Camb.) oil: a before-after study. Genet Mol Biol. 2016;39(4):554–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Fallon KS, Kaushik D, Michniak-Kohn B, Dunne CP, Zambraski EJ, Clarkson PM. Effects of quercetin supplementation on markers of muscle damage and inflammation after eccentric exercise. Int J Sport Nutr Exerc Metab. 2012;22(6):430–7.
Article
CAS
PubMed
Google Scholar
Meamarbashi A, Rajabi A. Preventive effects of 10-day supplementation with saffron and indomethacin on the delayed-onset muscle soreness. Clin J Sport Med. 2015;25(2):105–12.
Article
PubMed
Google Scholar
Milias GA, Nomikos T, Fragopoulou E, Athanasopoulos S, Antonopoulou S. Effects of baseline serum levels of se on markers of eccentric exercise-induced muscle injury. Biofactors. 2006;26(3):161–70.
Article
CAS
PubMed
Google Scholar
da Silva Barbosa CV, Silva AS, de Oliveira CVC, Massa NML, de Sousa YRF, da Costa WKA, et al. Effects of sesame (Sesamum indicum L.) supplementation on creatine kinase, lactate dehydrogenase, oxidative stress markers, and aerobic capacity in semi-professional soccer players. Front Physiol. 2017;8:196.
Google Scholar
Bohlooli S, Barmaki S, Khoshkhahesh F, Nakhostin-Roohi B. The effect of spinach supplementation on exercise-induced oxidative stress. J Sports Med Phys Fitness. 2015;55(6):609–14.
CAS
PubMed
Google Scholar
Jacob K, Periago MJ, Bohm V, Berruezo GR. Influence of lycopene and vitamin C from tomato juice on biomarkers of oxidative stress and inflammation. Br J Nutr. 2008;99(1):137–46.
Article
CAS
PubMed
Google Scholar
Tsitsimpikou C, Kioukia-Fougia N, Tsarouhas K, Stamatopoulos P, Rentoukas E, Koudounakos A, et al. Administration of tomato juice ameliorates lactate dehydrogenase and creatinine kinase responses to anaerobic training. Food Chem Toxicol. 2013;61:9–13.
Article
CAS
PubMed
Google Scholar