Murray B, Rosenbloom C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr Rev. 2018;76(4):243–59.
Article
PubMed
PubMed Central
Google Scholar
Casey A, Mann R, Banister K, Fox J, Morris PG, Macdonald IA, et al. Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by 13C MRS. Am J Phys. 2000;278(1 41-1):E65–75.
CAS
Google Scholar
Johnson NA, Stannard SR, Thompson MW. Muscle triglyceride and glycogen in endurance exercise implications for performance. Sports Med. 2004;34(3):151–64.
Article
PubMed
Google Scholar
Alghannam AF, Gonzalez JT, Betts JA. Restoration of muscle glycogen and functional capacity: role of post-exercise carbohydrate and protein co-ingestion. Nutrients. 2018;10:E253–80.
Burke LM, van Loon LJC, Hawley JA. Postexercise muscle glycogen resynthesis in humans. J Appl Physiol. 2017;122(5):1055–67.
Article
CAS
PubMed
Google Scholar
Ivy JL. Regulation of muscle glycogen repletion, muscle protein synthesis and repair following exercise. J Sports Sci Med. 2004;3:131.
PubMed
PubMed Central
Google Scholar
Jentjens R, Jeukendrup AE. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33(2):117–.
Ivy JL, Lee MC, Brozinick JT Jr, Reed MJ. Muscle glycogen storage after different amounts of carbohydrate ingestion. J Appl Physiol. 1988;65(5):2018–23.
Article
CAS
PubMed
Google Scholar
Trommelen J, Beelen M, Pinckaers PJM, Senden JM, Cermak NM, van Loon LJC. Fructose coingestion does not accelerate postexercise muscle glycogen repletion. Med Sci Sports Exerc. 2016;48(5):907–12.
Article
CAS
PubMed
Google Scholar
Blom PCS, Hostmark AT, Vaage O, Kardel KR, Maehlum S. Effect of different postexercise sugar diets on the rate of muscle glycogen-synthesis. Med Sci Sports Exerc. 1987;19(5):491–6.
Article
CAS
PubMed
Google Scholar
Aulin KP, Soderlund K, Hultman E. Muscle glycogen resynthesis rate in humans after supplementation of drinks containing carbohydrates with low and high molecular masses. Eur J Appl Physiol. 2000;81(4):346–51.
Article
Google Scholar
Parkin JAM, Carey MF, Martin IK, Stojanovska L, Febbraio MA. Muscle glycogen storage following prolonged exercise: effect of timing of ingestion of high glycemic index food. Med Sci Sports Exerc. 1997;29(2):220–4.
Article
CAS
PubMed
Google Scholar
Ivy JL, Katz AL, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen-synthesis after exercise - effect of time of carbohydrate ingestion. J Appl Physiol. 1988;64(4):1480–5.
Article
CAS
PubMed
Google Scholar
Keizer HA, Kuipers H, van Kranenburg G, Geurten P. Influence of liquid and solid meals on muscle glycogen resynthesis, plasma fuel hormone response, and maximal physical working capacity. Int J Sports Med. 1987;8(2):99–104.
Article
CAS
PubMed
Google Scholar
Reed MJ, Brozinick JT Jr, Lee MC, Ivy JL. Muscle glycogen storage postexercise: Effect of mode of carbohydrate administration. J Appl Physiol. 1989;66(2):720–6.
Article
CAS
PubMed
Google Scholar
Battram DS, Shearer J, Robinson D, Graham TE. Caffeine ingestion does not impede the resynthesis of proglycogen and macroglycogen after prolonged exercise and carbohydrate supplementation in humans. J Appl Physiol. 2004;96(3):943–50.
Article
CAS
PubMed
Google Scholar
Burke LM, Collier GR, Broad EM, Davis PG, Martin DT, Sanigorski AJ, et al. Effect of alcohol intake on muscle glycogen storage after prolonged exercise. J Appl Physiol. 2003;95(3):983–90.
Article
CAS
PubMed
Google Scholar
Cheng IS, Huang SW, Lu HC, Wu CL, Chu YC, Lee SD, et al. Oral hydroxycitrate supplementation enhances glycogen synthesis in exercised human skeletal muscle. Br J Nutr. 2012;107(7):1048–55.
Article
CAS
PubMed
Google Scholar
Impey SG, Hammond KM, Naughton R, Langan-Evans C, Shepherd SO, Sharples AP, et al. Whey protein augments leucinemia and postexercise p70S6K1 activity compared with a hydrolyzed collagen blend when in recovery from training with low carbohydrate availability. Int J Sport Nutr Exerc Metab. 2018;28(6):651–9.
Article
CAS
PubMed
Google Scholar
Pedersen DJ, Lessard SJ, Coffey VG, Churchley EG, Wootton AM, Ng T, et al. High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is coingested with caffeine. J Appl Physiol. 2008;105(1):7–13.
Article
CAS
PubMed
Google Scholar
Ruby BC, Gaskill SE, Slivka D, Harger SG. The addition of fenugreek extract (Trigonella foenum-graecum) to glucose feeding increases muscle glycogen resynthesis after exercise. Amino Acids. 2005;28(1):71–6.
Article
CAS
PubMed
Google Scholar
Slivka D, Cuddy J, Hailes W, Harger S, Ruby B. Glycogen resynthesis and exercise performance with the addition of fenugreek extract (4-hydroxyisoleucine) to post-exercise carbohydrate feeding. Amino Acids. 2008;35(2):439–44.
Article
CAS
PubMed
Google Scholar
Tsai TW, Chang CC, Liao SF, Liao YH, Hou CW, Tsao JP, et al. Effect of green tea extract supplementation on glycogen replenishment in exercised human skeletal muscle. Br J Nutr. 2017;117(10):1343–50.
Article
CAS
PubMed
Google Scholar
Tsao JP, Liao SF, Korivi M, Hou CW, Kuo CH, Wang HF, et al. Oral conjugated linoleic acid supplementation enhanced glycogen resynthesis in exercised human skeletal muscle. J Sports Sci. 2015;33(9):915–23.
Article
PubMed
Google Scholar
Vandoorne T, De Smet S, Ramaekers M, Van Thienen R, De Bock K, Clarke K, et al. Intake of a ketone ester drink during recovery from exercise promotes mTORC1 signaling but not glycogen resynthesis in human muscle. Front Physiol. 2017;8:310.
Article
PubMed
PubMed Central
Google Scholar
Tarnopolsky MA, Bosman M, MacDonald JR, Vandeputte D, Martin J, Roy BD. Postexercise protein-carbohydrate and carbohydrate supplements increase muscle glycogen in men and women. J Appl Physiol. 1997;83(6):1877–83.
Article
CAS
PubMed
Google Scholar
van Hall G, Saris WHM, van de Schoor PAI, Wagenmakers AJM. The effect of free glutamine and peptide ingestion on the rate of muscle glycogen resynthesis in man. Int J Sports Med. 2000;21(1):25–30.
Article
PubMed
Google Scholar
van Hall G, Shirreffs SM, Calbet JAL. Muscle glycogen resynthesis during recovery from cycle exercise: no effect of additional protein ingestion. J Appl Physiol. 2000;88(5):1631–6.
Article
PubMed
Google Scholar
van Loon LJC, Saris WHM, Kruijshoop M, Wagenmakers AJM. Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr. 2000;72(1):106–11.
Article
PubMed
Google Scholar
Betts J, Williams C. Short-term recovery from prolonged exercise. Sports Med. 2010;40(11):941–59.
Article
PubMed
Google Scholar
Potgieter S. Sport nutrition- A review of the latest guidelines for exercise and sport nutrition from the American College of Sport Nutrition, the International Olympic Committee and the International Society for Sports Nutrition. S Afr J Clin Nutr. 2013;26(1):6–16.
Google Scholar
Thomas DT, Erdman KA, Burke LM. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med Sci Sports Exerc. 2016;48(3):543–68.
CAS
PubMed
Google Scholar
Hickner RC, Fisher JS, Hansen PA, Racette SB, Mier CM, Turner MJ, et al. Muscle glycogen accumulation after endurance exercise in trained and untrained individuals. J Appl Physiol. 1997;83(3):897–903.
Article
CAS
PubMed
Google Scholar
Doyle JA, Sherman WM, Strauss RL. Effects of eccentric and concentric exercise on muscle glycogen replenishment. J Appl Physiol. 1993;74(4):1848–55.
Article
CAS
PubMed
Google Scholar
Casey A, Short AH, Hultman E, Greenhaff PL. Glycogen resynthesis in human muscle-fiber types following exercise-induced glycogen depletion. J Physiol-London. 1995;483(1):265–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piehl K. Time course for refilling of glycogen stores in human muscle fibres following exercise-induced glycogen depletion. Acta Physiol Scand. 1974;90(2):297–302.
Article
CAS
PubMed
Google Scholar
Piehl K. Glycogen storage and depletion in human skeletal muscle fibres. Acta Physiol Scand. 1974;90(402 sup):1–32.
Vollestad NK, Blom PCS, Gronnerod O. Resynthesis of glycogen in different muscle fibre types after prolonged exhaustive exercise in man. Acta Physiol Scand. 1989;137(1):15–21.
Article
CAS
PubMed
Google Scholar
Bonen A, Ness GW, Belcastro AN, Kirby RL. Mild exercise impedes glycogen repletion in muscle. J Appl Physiol. 1985;58(5):1622–9.
Article
CAS
PubMed
Google Scholar
Zachwieja JJ, Costill DL, Pascoe DD, Robergs RA, Fink WJ. Influence of muscle glycogen depletion on the rate of resynthesis. Med Sci Sports Exerc. 1991;23(1):44–8.
Article
CAS
PubMed
Google Scholar
Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.
Article
PubMed
PubMed Central
Google Scholar
Cheng AJ, Chaillou T, Kamandulis S, Subocius A, Westerblad H, Brazaitis M, et al. Carbohydrates do not accelerate force recovery after glycogen-depleting followed by high-intensity exercise in humans. Scand J Med Sci Sports. 2020;30(6):998–1007.
Article
PubMed
Google Scholar
Greene J, Louis J, Korostynska O, Mason A. State-of-the-art methods for skeletal muscle glycogen analysis in athletes-the need for novel non-invasive techniques. Biosensors (Basel). 2017;7(1):11.
Article
CAS
Google Scholar
Areta JL, Hopkins WG. Skeletal muscle glycogen content at rest and during endurance exercise in humans: a meta-analysis. Sports Med. 2018;48(9):2091–102.
Article
PubMed
Google Scholar
Haub MD, Potteiger JA, Jacobsen DJ, Nau KL, Magee LA, Comeau MJ. Glycogen replenishment and repeated maximal effort exercise: effect of liquid carbohydrate. Int J Sport Nutr. 1999;9(4):406–15.
Article
CAS
PubMed
Google Scholar
Mathai AS, Bonen A, Benton CR, Robinson DL, Graham TE. Rapid exercise-induced changes in PGC-1α mRNA and protein in human skeletal muscle. J Appl Physiol. 2008;105(4):1098–105.
Article
CAS
PubMed
Google Scholar
Carrithers JA, Williamson DL, Gallagher PM, Godard MP, Schulze KE, Trappe SW. Effects of postexercise carbohydrate-protein feedings on muscle glycogen restoration. J Appl Physiol. 2000;88(6):1976–82.
Article
CAS
PubMed
Google Scholar
Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane handbook for systematic reviews of interventions. Wiley Online Library; 2019.
Pascoe DD, Costill DL, Fink WJ, Robergs RA, Zachwieja JJ. Glycogen resynthesis in skeletal muscle following resistive exercise. Med Sci Sports Exerc. 1993;25(3):349–54.
Article
CAS
PubMed
Google Scholar
Wilson RJ, Gusba JE, Robinson DL, Graham TE. Glycogenin protein and mRNA expression in response to changing glycogen concentration in exercise and recovery. Am J Physiol Endocrinol Metab. 2007;292(6):E1815–E22.
Article
CAS
PubMed
Google Scholar
Roy BD, Tarnopolsky MA. Influence of differing macronutrient intakes on muscle glycogen resynthesis after resistance exercise. J Appl Physiol. 1998;84(3):890–6.
Article
CAS
PubMed
Google Scholar
Alghannam AF, Jedrzejewski D, Bilzon J, Thompson D, Tsintzas K, Betts JA. Influence of post-exercise carbohydrate-protein ingestion on muscle glycogen metabolism in recovery and subsequent running exercise. Int J Sport Nutr Exerc Metab. 2016;26(6):572–80.
Article
CAS
PubMed
Google Scholar
Betts JA, Williams C, Boobis L, Tsintzas K. Increased carbohydrate oxidation after ingesting carbohydrate with added protein. Med Sci Sports Exerc. 2008;40(5):903–12.
Article
CAS
PubMed
Google Scholar
Cogan KE, Evans M, Iuliano E, Melvin A, Susta D, Neff K, et al. Co-ingestion of protein or a protein hydrolysate with carbohydrate enhances anabolic signaling, but not glycogen resynthesis, following recovery from prolonged aerobic exercise in trained cyclists. Eur J Appl Physiol. 2018;118(2):349–59.
Article
CAS
PubMed
Google Scholar
Howarth KR, Moreau NA, Phillips SM, Gibala MJ. Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J Appl Physiol. 2009;106(4):1394–402.
Article
CAS
PubMed
Google Scholar
Wang B, Ding ZP, Wang WY, Hwang JY, Liao YH, Ivy JL. The effect of an amino acid beverage on glucose response and glycogen replenishment after strenuous exercise. Eur J Appl Physiol. 2015;115(6):1283–94.
Article
CAS
PubMed
Google Scholar
Yaspelkis BB, Ivy JL. The effect of a carbohydrate-arginine supplement on postexercise carbohydrate metabolism. Int J Sport Nutr. 1999;9(3):241–50.
Article
CAS
PubMed
Google Scholar
Zawadzki KM, Yaspelkis BB III, Ivy JL. Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992;72(5):1854–9.
Article
CAS
PubMed
Google Scholar
Beelen M, Van Kranenburg J, Senden JM, Kuipers H, Van Loon LJC. Impact of caffeine and protein on postexercise muscle glycogen synthesis. Med Sci Sports Exerc. 2012;44(4):692–700.
Article
CAS
PubMed
Google Scholar
Jentjens R, Van Loon LJC, Mann CH, Wagenmakers AJM, Jeukendrup AE. Addition of protein and amino acids to carbohydrates does not enhance postexercise muscle glycogen synthesis. J Appl Physiol. 2001;91(2):839–46.
Article
CAS
PubMed
Google Scholar
Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials- is blinding necessary? Control Clin Trials. 1996;17(1):1–12.
Article
CAS
PubMed
Google Scholar
Higgins JP, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Collaboration TC, editor; 2011.
Google Scholar
Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Br Med J. 2003;327:557–60.
Article
Google Scholar
Gusba JE, Wilson RJ, Robinson DL, Graham TE. Interleukin-6 and its mRNA responses in exercise and recovery: relationship to muscle glycogen. Scand J Med Sci Sports. 2008;18(1):77–85.
Article
CAS
PubMed
Google Scholar
Adamo KB, Tarnopolsky MA, Graham TE. Dietary carbohydrate and postexercise synthesis of proglycogen and macroglycogen in human skeletal muscle. Am J Physiol Endocrinol Metab. 1998;275(2):E229–E34.
Article
CAS
Google Scholar
Lunn WR, Pasiakos SM, Colletto MR, Karfonta KE, Carbone JW, Anderson JM, et al. Chocolate milk and endurance exercise recovery: protein balance, glycogen, and performance. Med Sci Sports Exerc. 2012;44(4):682–91.
Article
CAS
PubMed
Google Scholar
Margolis LM, Allen JT, Hatch-McChesney A, Pasiakos SM. Coingestion of Carbohydrate and Protein on Muscle Glycogen Synthesis after Exercise: A Meta-analysis. Med Sci Sports Exerc. 2020. https://doi.org/10.1249/mss.0000000000002476.
McCartney D, Desbrow B, Irwin C. Post-exercise ingestion of carbohydrate, protein and water: a systematic review and meta-analysis for effects on subsequent athletic performance. Sports Med. 2018;48(2):379–408.
Article
PubMed
Google Scholar
van Loon LJC, Kruijshoop M, Verhagen H, Saris WHM, Wagenmakers AJM. Ingestion of protein hydrolysate and amino acid-carbohydrate mixtures increases postexercise plasma insulin responses in men. J Nutr. 2000;130(10):2508–13.
Article
PubMed
Google Scholar
Takeshima N, Sozu T, Tajika A, Ogawa Y, Hayasaka Y, Furukawa TA. Which is more generalizable, powerful and interpretable in meta-analyses, mean difference or standardized mean difference? BMC Med Res Methodol. 2014;14:30.
Article
PubMed
PubMed Central
Google Scholar
Williams MB, Raven PB, Fogt DL, Ivy JL. Effects of recovery beverages on glycogen restoration and endurance exercise performance. J Strength Cond Res. 2003;17(1):12–9.
PubMed
Google Scholar
Kammer L, Ding ZP, Wang B, Hara D, Liao YH, Ivy JL. Cereal and nonfat milk support muscle recovery following exercise. J Int Soc Sports Nutr. 2009;6:11.
Article
PubMed
PubMed Central
CAS
Google Scholar