Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol. 2017;32(5):541–56.
Article
PubMed
Google Scholar
Penedo FJ, Dahn JR. Exercise and well-being: a review of mental and physical health benefits associated with physical activity. Curr Opin Psychiatry. 2005;18(2):189–93.
Article
PubMed
Google Scholar
American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 10th ed. Philadelphia: Wolters Kluwer; 2018.
Google Scholar
Australian Institute of Health and Welfare. Physical activity across the life stages. Cat. no. PHE 225. Canberra. 2018
Ryan RM, Frederick CM, Lepes D, Rubio N, Sheldon KM. Intrinsic motivation and exercise adherence. Int J sport Psycho. 1997;28(4):335–54.
Google Scholar
Ekkekakis P, Hall EE, Petruzzello SJ. The relationship between exercise intensity and affective responses demystified: to crack the 40-year-old nut, replace the 40-year-old nutcracker! Ann Behav Med. 2008;35(2):136–49.
Article
PubMed
Google Scholar
Ekkekakis P, Parfitt G, Petruzzello S. The pleasure and displeasure people feel when they exercise at different intensities decennial update and progress towards a tripartite rationale for exercise intensity prescription. Sports Med. 2011;41(8):641–71.
Article
PubMed
Google Scholar
Ryan RM, Deci EL. Intrinsic and extrinsic motivations: classic definitions and new directions. Contemp Educ Psychol. 2000;25(1):54–67.
Article
CAS
PubMed
Google Scholar
Feito Y, Heinrich KM, Butcher SJ, Poston WSC. High-intensity functional training (hift): definition and research implications for improved fitness. Sports. 2018;6(3):76.
Article
PubMed Central
Google Scholar
Kercher VM, Kercher K, Bennion T, Yates BA, Feito Y, Alexander C, et al. Fitness trends from around the globe. ACSM’s Health Fit J. 2021;25(1):20–31.
Article
Google Scholar
Batrakoulis A, Jamurtas AZ, Fatouros IG. High-intensity interval training in metabolic diseases: Physiological adaptations. ACSM’s Health Fit J. 2021;25(5):54–9.
Article
Google Scholar
Ide BN, Silvatti AP, Marocolo M, Santos CPC, Silva BVC, Oranchuk DJ, et al. Is there any non-functional training? A conceptual review. Front Sports Act Liv. 2022;66:3.
Google Scholar
Fleck SJ, Kraemer W. Designing resistance training programs, 4E: Human Kinetics; 2014.
Kravitz L. High-intensity interval training pdf. In: American College of Sports Medicine. 2011. https://www.acsm.org/docs/default-source/files-for-resource-library/high-intensity-interval-training.pdf. Accessed 15 Apr 2021.
Batrakoulis A, Jamurtas T, Draganidis D, Georgakouli K, Tsimeas P, Poulios A, et al. Hybrid neuromuscular training improves cardiometabolic health and alters redox status in inactive overweight and obese women: a randomized controlled trial. Antioxidants. 2021;10(10):1601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(5):1077–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sperlich B, Wallmann-Sperlich B, Zinner C, Von Stauffenberg V, Losert H, Holmberg HC. Functional high-intensity circuit training improves body composition, peak oxygen uptake, strength, and alters certain dimensions of quality of life in overweight women. Front Physiol. 2017;8:172.
Article
PubMed
PubMed Central
Google Scholar
Batrakoulis A, Jamurtas AZ, Georgakouli K, Draganidis D, Deli CK, Papanikolaou K, et al. High intensity, circuit-type integrated neuromuscular training alters energy balance and reduces body mass and fat in obese women: A 10-month training-detraining randomized controlled trial. PLoS ONE. 2018;13(8):e0202390.
Article
PubMed
PubMed Central
Google Scholar
Ballesta-García I, Martínez-González-Moro I, Rubio-Arias J, Carrasco-Poyatos M. High-intensity interval circuit training versus moderate-intensity continuous training on functional ability and body mass index in middle-aged and older women: a randomized controlled trial. Int J Environ Res Public Health. 2019;16(21):4205.
Article
PubMed Central
Google Scholar
McRae G, Payne A, Zelt JG, Scribbans TD, Jung ME, Little JP, et al. Extremely low volume, whole-body aerobic–resistance training improves aerobic fitness and muscular endurance in females. Appl Physiol Nutr Metab. 2012;37(6):1124–31.
Article
PubMed
Google Scholar
Faelli E, Bisio A, Codella R, Ferrando V, Perasso L, Panascì M, et al. Acute and chronic catabolic responses to crossfit(®) and resistance training in young males. Int J Environ Res Public Health. 2020;17(19):7172.
Article
PubMed Central
Google Scholar
Buckley S, Knapp K, Lackie A, Lewry C, Horvey K, Benko C, et al. Multimodal high-intensity interval training increases muscle function and metabolic performance in females. Appl Physiol Nutr Metab. 2015;40(11):1157–62.
Article
PubMed
Google Scholar
Sallis JF, Hovell MF. Determinants of exercise behavior. Exerc Sport Sci Rev. 1990;18:307–30.
Article
CAS
PubMed
Google Scholar
Heinrich KM, Patel PM, O’Neal JL, Heinrich BS. High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: an intervention study. BMC Public Health. 2014;14(1):789.
Article
PubMed
PubMed Central
Google Scholar
Eather N, Babic M, Riley N, Harris N, Jung M, Jeffs M, et al. Integrating high-intensity interval training into the workplace: the work-HIIT pilot RCT. Scand J Med Sci Sport. 2020;30(12):2445–55.
Article
Google Scholar
Fisher J, Sales A, Carlson L, Steele J. A comparison of the motivational factors between crossfit participants and other resistance exercise modalities: a pilot study. J Sports Med Phys Fitness. 2017;57(9):1227–34.
Article
PubMed
Google Scholar
Bartlett JD, Close GL, MacLaren DP, Gregson W, Drust B, Morton JP. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. J Sports Sci. 2011;29(6):547–53.
Article
PubMed
Google Scholar
Jung M, Little J. Taking a HIIT for physical activity: is interval training viable for improving health. American College of Sports Medicine Annual Meeting; 2013; Indianapolis: American College of Sports Medicine. 2013.
Kilpatrick M, Jung M, Little J. High-intensity interval training: a review of physiological and psychological responses. ACSM’s Health Fit J. 2014;18(5):11–6.
Article
Google Scholar
Frazão DT, de Farias Junior LF, Dantas TC, Krinski K, Elsangedy HM, Prestes J, et al. Feeling of pleasure to high-intensity interval exercise is dependent of the number of work bouts and physical activity status. PLoS ONE. 2016;11(3):e0152752.
Article
PubMed
PubMed Central
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.
Davis WJ, Wood DT, Andrews RG, Elkind LM, Davis WB. Concurrent training enhances athletes’ cardiovascular and cardiorespiratory measures. J Strength Cond Res. 2008;22(5):1503–14.
Article
PubMed
Google Scholar
Davis WJ, Wood DT, Andrews RG, Elkind LM, Davis WB. Concurrent training enhances athletes’ strength, muscle endurance, and other measures. J Strength Cond Res. 2008;22(5):1487–502.
Article
PubMed
Google Scholar
Bahremand M, Hakak Dokht E, Moazzami M. A comparison of crossfit and concurrent training on myonectin, insulin resistance and physical performance in healthy young women. Arch Physiol Biochem. 2020;66:1–7.
Article
Google Scholar
Carneiro MAS, de Oliveira AA, Martins FM, Souza AP, Nunes PRP, Orsatti FL. High-intensity interval body weight training promotes different adaptations to combined training in body composition and muscle strength in young women. Sci Sports. 2018;33(3):e105–13.
Article
Google Scholar
Mcweeny DK, Boule NG, Neto JHF, Kennedy MD. Effect of high intensity functional training and traditional resistance training on aerobic, anaerobic, and musculoskeletal fitness improvement. J Phys Educ Sport. 2020;20(4):1791–802.
Google Scholar
Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. (Eds). Cochrane handbook for systematic reviews of interventions version 6.2. Cochrane. 2021. www.training.cochrane.org/handbook.
Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.
Article
PubMed
PubMed Central
Google Scholar
Batrakoulis A, Tsimeas P, Deli CK, Vlachopoulos D, Ubago-Guisado E, Poulios A, et al. Hybrid neuromuscular training promotes musculoskeletal adaptations in inactive overweight and obese women: a training-detraining randomized controlled trial. J Sports Sci. 2021;39(5):503–12.
Article
PubMed
Google Scholar
Batrakoulis A, Loules G, Georgakouli K, Tsimeas P, Draganidis D, Chatzinikolaou A, et al. High-intensity interval neuromuscular training promotes exercise behavioral regulation, adherence and weight loss in inactive obese women. Eur J Sport Sci. 2020;20(6):783–92.
Article
PubMed
Google Scholar
Engel FA, Rappelt L, Held S, Donath L. Can high-intensity functional suspension training over eight weeks improve resting blood pressure and quality of life in young adults? A randomized controlled trial. Int J Environ Res Public Health. 2019;16(24):5062.
Article
PubMed Central
Google Scholar
Nunes PRP, Martins FM, Souza AP, Carneiro MAS, Nomelini RS, Michelin MA, et al. Comparative effects of high-intensity interval training with combined training on physical function markers in obese postmenopausal women: a randomized controlled trial. Menopause. 2019;26(11):1242–9.
Article
PubMed
Google Scholar
Ajjimaporn A, Khemtong C, Widjaja W. Effect of 4-week HICTBW training on cardiorespiratory fitness in sedentary women. Asian J Sports Med. 2019;10(4):1–7.
Google Scholar
Paoli A, Pacelli F, Bargossi AM, Marcolin G, Guzzinati S, Neri M, et al. Effects of three distinct protocols of fitness training on body composition, strength and blood lactate. J Sports Med Phys Fit. 2010;50(1):43–51.
CAS
Google Scholar
Mirzaei B, Rahmani-Nia F, Mehrabani J, Sotudeh M. Effect of serial and integrated concurrent exercise on selected physical fitness factors of young men handball players. Med Sport. 2013;66(1):47–59.
Google Scholar
Romero-Arenas S, Ruiz R, Vera-Ibáñez A, Colomer-Poveda D, Guadalupe-Grau A, Marquez G. Neuromuscular and cardiovascular adaptations in response to high-intensity interval power training. J Strength Cond Res. 2018;32(1):130–8.
Article
PubMed
Google Scholar
Meier J, Quednow J, Sedlak T, Janot J, Braun S. The effects of high intensity interval-based kettle bells and battle rope training on grip strength and body composition in college aged adults. Int J Exerc Sci. 2015;8(2):124–33.
Google Scholar
Rezende Barbosa MPDC, Oliveira VC, Silva AKFD, Pérez-Riera AR, Vanderlei LC. Effectiveness of functional training on cardiorespiratory parameters: a systematic review and meta-analysis of randomized controlled trials. Clin Physiol Funct Imaging. 2018;38(4):539–46.
Article
PubMed
Google Scholar
Wilke J, Mohr L. Chronic effects of high-intensity functional training on motor function: a systematic review with multilevel meta-analysis. Sci Rep. 2020;10(1):21680.
Article
CAS
PubMed
PubMed Central
Google Scholar
Claudino JG, Gabbett TJ, Bourgeois F, Souza HS, Miranda RC, Mezencio B, et al. CrossFit overview: systematic review and meta-analysis. Sports Med Open. 2018;4(1):11.
Article
PubMed
PubMed Central
Google Scholar
Meyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review. Workplace Health Saf. 2017;65(12):612–8.
Article
PubMed
Google Scholar
Slade SC, Dionne CE, Underwood M, Buchbinder R, Beck B, Bennell K, et al. Consensus on Exercise Reporting Template (CERT): modified Delphi Study. Phys Ther. 2016;96(10):1514–24.
Article
PubMed
Google Scholar
Lagally KM, Cordero J, Good J, Brown DD, McCaw ST. Physiologic and metabolic responses to a continuous functional resistance exercise workout. J Strength Cond Res. 2009;23(2):373–9.
Article
PubMed
Google Scholar
Tibana RA, de Almeida LM, Frade de Sousa NM, Nascimento Dda C, Neto IV, de Almeida JA, et al. Two consecutive days of crossfit training affects pro and anti-inflammatory cytokines and osteoprotegerin without impairments in muscle power. Front Physiol. 2016;7:260.
Tibana RA, de Sousa NMF, Cunha GV, Prestes J, Fett C, Gabbett TJ, et al. Validity of session rating perceived exertion method for quantifying internal training load during high-intensity functional training. Sports. 2018;6(3):68.
Article
PubMed Central
Google Scholar
Gibala MJ, Little JP. Just hit it! a time-efficient exercise strategy to improve muscle insulin sensitivity. J Physiol. 2010;588(Pt 18):3341–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tabata I, Nishimura K, Kouzaki M, Hirai Y, Ogita F, Miyachi M, et al. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and vo2max. Med Sci Sports Exerc. 1996;28(10):1327–30.
Article
CAS
PubMed
Google Scholar
Schmidt D, Anderson K, Graff M, Strutz V. The effect of high-intensity circuit training on physical fitness. J Sports Med Phys Fit. 2016;56(5):534–40.
Google Scholar
Burd NA, Andrews RJ, West DW, Little JP, Cochran AJ, Hector AJ, et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012;590(2):351–62.
Article
CAS
PubMed
Google Scholar
Davis WJ, Wood DT, Andrews RG, Elkind LM, Davis WB. Elimination of delayed-onset muscle soreness by pre-resistance cardioacceleration before each set. J Strength Cond Res. 2008;22(1):212–25.
Article
PubMed
Google Scholar
Eddens L, van Someren K, Howatson G. The role of intra-session exercise sequence in the interference effect: a systematic review with meta-analysis. Sports Med. 2018;48(1):177–88.
Article
PubMed
Google Scholar
Vechin FC, Conceição MS, Telles GD, Libardi CA, Ugrinowitsch C. Interference phenomenon with concurrent strength and high-intensity interval training-based aerobic training: an updated model. Sports Med. 2021;51(4):599–605.
Article
PubMed
Google Scholar
Carlson JA, Sallis JF, Wagner N, Calfas KJ, Patrick K, Groesz LM, et al. Brief physical activity-related psychosocial measures: reliability and construct validity. J Phys Act Health. 2012;9(8):1178–86.
Article
PubMed
Google Scholar
Beauchamp MR. Promoting exercise adherence through groups: a self-categorization theory perspective. Exerc Sport Sci Rev. 2019;47(1):54–61.
Article
PubMed
Google Scholar
Nielsen G, Wikman JM, Jensen CJ, Schmidt JF, Gliemann L, Andersen TR. Health promotion: the impact of beliefs of health benefits, social relations and enjoyment on exercise continuation. Scand J Med Sci Sports. 2014;24(Suppl 1):66–75.
Article
PubMed
Google Scholar
Islam H, Siemens TL, Matusiak JBL, Sawula L, Bonafiglia JT, Preobrazenski N, et al. Cardiorespiratory fitness and muscular endurance responses immediately and 2 months after a whole-body Tabata orvigorous-intensity continuous training intervention. Appl Physiol Nutr Metab. 2020;45(6):650–8.
Article
PubMed
Google Scholar
Hovsepian A, Esfarjani F, Bambaeichi E, Zolaktaf V. The effect of high intensity functional training on the oxidative status, muscle damage and performance of basketball players. J Sports Med Phys Fit. 2021;61(2):188–98.
Google Scholar