Kraemer WJ, Deschenes MR, Fleck SJ. Physiological adaptations to resistance exercise. Sports Med. 1988;6(4):246–56.
Article
CAS
PubMed
Google Scholar
Landi F, Marzetti E, Martone AM, Bernabei R, Onder G. Exercise as a remedy for sarcopenia. Curr Opin Clin Nutr Metab Care. 2014;17(1):25–31.
PubMed
Google Scholar
Villareal DT, Aguirre L, Gurney AB, Waters DL, Sinacore DR, Colombo E, et al. Aerobic or resistance exercise, or both, in dieting obese older adults. N Engl J Med. 2017;376(20):1943–55.
Article
PubMed
PubMed Central
Google Scholar
Mattson MP, Maudsley S, Martin B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 2004;27(10):589–94.
Article
CAS
PubMed
Google Scholar
Yarrow JF, White LJ, McCoy SC, Borst SE. Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF). Neurosci Lett. 2010;479(2):161–5.
Article
CAS
PubMed
Google Scholar
Marston KJ, Newton MJ, Brown BM, Rainey-Smith SR, Bird S, Martins RN, et al. Intense resistance exercise increases peripheral brain-derived neurotrophic factor. J Sci Med Sport. 2017;20(10):899–903.
Article
PubMed
Google Scholar
Castaneda C, Layne JE, Munoz-Orians L, Gordon PL, Walsmith J, Foldvari M, et al. A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes. Diabetes Care. 2002;25(12):2335–41.
Article
PubMed
Google Scholar
Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065–79.
Article
PubMed
PubMed Central
Google Scholar
Billinger SA, Arena R, Bernhardt J, Eng JJ, Franklin BA, Johnson CM, et al. Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(8):2532–53.
Article
PubMed
Google Scholar
Williams MA, Haskell WL, Ades PA, Amsterdam EA, Bittner V, Franklin BA, et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update. Circulation. 2007;116(5):572–84.
Article
PubMed
Google Scholar
Price KJ, Gordon BA, Bird SR, Benson AC. A review of guidelines for cardiac rehabilitation exercise programmes: is there an international consensus? Eur J Prev Cardiol. 2016;23(16):1715–33.
Article
PubMed
Google Scholar
Edwards MR, Martin DH, Hughson RL. Cerebral hemodynamics and resistance exercise. Med Sci Sports Exerc. 2002;34(7):1207–11.
Article
PubMed
Google Scholar
Haykowsky M, Findlay J, Ignaszewski A. Aneurysmal subarachnoid hemorrhage associated with weight training: three case reports. LWW; 1996.
Book
Google Scholar
Vlak MH, Rinkel GJ, Greebe P, van der Bom JG, Algra A. Trigger factors and their attributable risk for rupture of intracranial aneurysms: a case-crossover study. Stroke. 2011;42(7):1878–82.
Article
PubMed
Google Scholar
Compton D, Hill P, Sinclair J. Weight-lifters’ blackout. Lancet. 1973;302(7840):1234–7.
Article
Google Scholar
Ainslie PN, Ashmead JC, Ide K, Morgan BJ, Poulin MJ. Differential responses to CO2 and sympathetic stimulation in the cerebral and femoral circulations in humans. J Physiol. 2005;566(2):613–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willie CK, Tzeng YC, Fisher JA, Ainslie PN. Integrative regulation of human brain blood flow. J Physiol. 2014;592(5):841–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Filosa JA, Iddings JA. Astrocyte regulation of cerebral vascular tone. Am J Physiol Heart Circ Physiol. 2013;305:H609–H19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20(1):45–52.
Article
CAS
PubMed
Google Scholar
Ogoh S, Sato K, Nakahara H, Okazaki K, Subudhi AW, Miyamoto T. Effect of acute hypoxia on blood flow in vertebral and internal carotid arteries. Exp Physiol. 2013;98(3):692–8.
Article
PubMed
Google Scholar
Willie CK, Macleod DB, Shaw AD, Smith KJ, Tzeng YC, Eves ND, et al. Regional brain blood flow in man during acute changes in arterial blood gases. J Physiol. 2012;590(14):3261–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogoh S, Brothers RM, Barnes Q, Eubank WL, Hawkins MN, Purkayastha S. The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise. J Physiol. 2005;569(2):697–704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamner J, Tan CO, Lee K, Cohen MA, Taylor JA. Sympathetic control of the cerebral vasculature in humans. Stroke. 2010;41(1):102–9.
Article
CAS
PubMed
Google Scholar
Ogoh S, Sørensen H, Hirasawa A, Sasaki H, Washio T, Hashimoto T, et al. Dynamic cerebral autoregulation is unrelated to decrease in external carotid artery blood flow during acute hypotension in healthy young men. Exp Physiol. 2016;101(8):1040–9.
Article
CAS
PubMed
Google Scholar
Saleem S, Teal PD, Kleijn WB, Ainslie PN, Tzeng Y-C. Identification of human sympathetic neurovascular control using multivariate wavelet decomposition analysis. Am J Physiol Heart Circ Physiol. 2016;311(3):H837–H48.
Article
PubMed
Google Scholar
Ainslie PN, Duffin J. Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Phys Regul Integr Comp Phys. 2009;296(5):R1473–R95.
CAS
Google Scholar
Kety SS, Schmidt CF. The effects of active and passive hyperventilation on cerebral blood flow, cerebral oxygen consumption, cardiac output, and blood pressure of normal young men. J Clin Investig. 1946;25(1):107–19.
Article
PubMed
PubMed Central
Google Scholar
Battisti-Charbonney A, Fisher J, Duffin J. The cerebrovascular response to carbon dioxide in humans. J Physiol. 2011;589(12):3039–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kety SS, Schmidt CF. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Investig. 1948;27(4):484–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith KJ. Ainslie PN. Exp Physiol: Regulation of cerebral blood flow and metabolism during exercise; 2017.
Google Scholar
Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39(2):183–238.
Article
CAS
PubMed
Google Scholar
Tzeng Y-C, Ainslie PN. Blood pressure regulation IX: cerebral autoregulation under blood pressure challenges. Eur J Appl Physiol. 2013:1–15.
Lucas SJE, Tzeng YC, Galvin SD, Thomas KN, Ogoh S, Ainslie PN. Influence of changes in blood pressure on cerebral perfusion and oxygenation. Hypertension. 2010;55(3):698–705.
Article
CAS
PubMed
Google Scholar
Zhang R, Behbehani K, Levine BD. Dynamic pressure–flow relationship of the cerebral circulation during acute increase in arterial pressure. J Physiol. 2009;587(11):2567–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan CO. Defining the characteristic relationship between arterial pressure and cerebral flow. J Appl Physiol. 2012;113:1194–200.
Article
PubMed
PubMed Central
Google Scholar
Numan T, Bain AR, Hoiland RL, Smirl JD, Lewis NC, Ainslie PN. Static autoregulation in humans: a review and reanalysis. Med Eng Phys. 2014;36(11):1487–95.
Article
PubMed
Google Scholar
Ozturk ED, Tan CO. Human cerebrovascular function in health and disease: insights from integrative approaches. J Physiol Anthropol. 2018;37(1):4.
Article
PubMed
PubMed Central
Google Scholar
Donnelly J, Budohoski KP, Smielewski P, Czosnyka M. Regulation of the cerebral circulation: bedside assessment and clinical implications. Crit Care. 2016;20(1):129.
Article
PubMed
PubMed Central
Google Scholar
MacDougall J, McKelvie R, Moroz D, Sale D, McCartney N, Buick F. Factors affecting blood pressure during heavy weight lifting and static contractions. J Appl Physiol. 1992;73(4):1590–7.
Article
CAS
PubMed
Google Scholar
Hamilton W, Woodbury R, Harper H. Arterial, cerebrospinal and venous pressures in man during cough and strain. Am J Physiol. 1944;141(1):42–50.
Article
Google Scholar
Pstras L, Thomaseth K, Waniewski J, Balzani I, Bellavere F. The Valsalva manoeuvre: physiology and clinical examples. Acta Physiol. 2016;217(2):103–19.
Article
CAS
Google Scholar
Pott F, van Lieshout JJ, Ide K, Madsen P, Secher NH. Middle cerebral artery blood velocity during a Valsalva maneuver in the standing position. J Appl Physiol. 2000;88(5):1545–50.
Article
CAS
PubMed
Google Scholar
Tiecks FP, Lam AM, Matta BF, Strebel S, Douville C, Newell DW. Effects of the Valsalva maneuver on cerebral circulation in healthy adults: a transcranial Doppler study. Stroke. 1995;26(8):1386–92.
Article
CAS
PubMed
Google Scholar
Low PA, Tomalia VA, Park K-J. Autonomic function tests: some clinical applications. J Clin Neurol. 2013;9(1):1–8.
Article
PubMed
PubMed Central
Google Scholar
Perry BG, De Hamel T, Thomas KN, Wilson LC, Gibbons TD, Cotter JD. Cerebrovascular haemodynamics during isometric resistance exercise with and without the Valsalva manoeuvre. Eur J Appl Physiol. 2020:1–13.
Korner P, Tonkin A, Uther J. Reflex and mechanical circulatory effects of graded Valsalva maneuvers in normal man. J Appl Physiol. 1976;40(3):434–40.
Article
CAS
PubMed
Google Scholar
Perry BG, Mündel T, Cochrane DJ, Cotter JD, Lucas SJ. The cerebrovascular response to graded Valsalva maneuvers while standing. Phys Rep. 2014;2(2):e00233.
Article
Google Scholar
Goldberg H, Elisberg E, Katz L. The effects of the Valsalva-like maneuver upon the circulation in normal individuals and patients with mitral stenosis. Circulation. 1952;5(1):38–47.
Article
CAS
PubMed
Google Scholar
Greenfield JC Jr, Rembert JC, Tindall GT. Transient changes in cerebral vascular resistance during the Valsalva maneuver in man. Stroke. 1984;15(1):76–9.
Article
PubMed
Google Scholar
Haykowsky MJ, Eves ND, Warburton DE, Findlay MJ. Resistance exercise, the Valsalva maneuver, and cerebrovascular transmural pressure. Med Sci Sports Exerc. 2003;35(1):65–8.
Article
PubMed
Google Scholar
Wilson MH. Monro-Kellie 2.0: The dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36(8):1338–50.
Article
PubMed
PubMed Central
Google Scholar
Greenfield JC Jr, Tindall GT. Effect of acute increase in intracranial pressure on blood flow in the internal carotid artery of man. J Clin Investig. 1965;44(8):1343.
Article
PubMed
PubMed Central
Google Scholar
Kety SS, Shenkin HA, Schmidt CF. The effects of increased intracranial pressure on cerebral circulatory functions in man. J Clin Investig. 1948;27(4):493.
Article
PubMed
PubMed Central
Google Scholar
Bloomfield GL, Ridings PC, Blocher CR, Marmarou A, Sugerman HJ. A proposed relationship between increased intra-abdominal, intrathoracic, and intracranial pressure. Crit Care Med. 1997;25(3):496–503.
Article
CAS
PubMed
Google Scholar
Perry BG, Schlader ZJ, Barnes MJ, Cochrane DJ, Lucas SJ, Mündel T. Hemodynamic response to upright resistance exercise: effect of load and repetition. Med Sci Sports Exerc. 2014;46:479–87.
Article
PubMed
Google Scholar
Zhang R, Zuckerman JH, Iwasaki K, Wilson TE, Crandall CG, Levine BD. Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation. 2002;106(14):1814–20.
Article
PubMed
Google Scholar
Perry BG, Cotter JD, Mejuto G, Mündel T, Lucas SJ. Cerebral hemodynamics during graded Valsalva maneuvers. Front Physiol. 2014;5:1–7.
Article
Google Scholar
Brassard P, Tymko MM, Ainslie PN. Sympathetic control of the brain circulation: appreciating the complexities to better understand the controversy. Auton Neurosci. 2017;207:37–47.
Article
PubMed
Google Scholar
Verbree J, Bronzwaer A, van Buchem MA, Daemen MJ, van Lieshout JJ, van Osch MJ. Middle cerebral artery diameter changes during rhythmic handgrip exercise in humans. J Cereb Blood Flow Metab. 2017;37(8):2921–7.
Article
CAS
PubMed
Google Scholar
Cassaglia PA, Griffiths RI, Walker AM. Sympathetic nerve activity in the superior cervical ganglia increases in response to imposed increases in arterial pressure. Am J Phys Regul Integr Comp Phys. 2008;294(4):1255–61.
Google Scholar
Zhang R, Crandall CG, Levine BD. Cerebral hemodynamics during the valsalva maneuver insights from ganglionic blockade. Stroke. 2004;35(4):843–7.
Article
CAS
PubMed
Google Scholar
Dickerman R, McConathy W, Smith G, East J, Rudder L. Middle cerebral artery blood flow velocity in elite power athletes during maximal weight-lifting. Neurol Res. 2000;22(4):337–40.
Article
CAS
PubMed
Google Scholar
Koch FDA, Ivers M, Gehrt A, Schnoor P, Rump A, Rieckert H. Cerebral autoregulation is temporarily disturbed in the early recovery phase after dynamic resistance exercise. Clin Auton Res. 2005;15(2):83–91.
Article
PubMed
Google Scholar
Moralez G, Romero SA, Rickards CA, Ryan KL, Convertino VA, Cooke WH. Effects of dehydration on cerebrovascular control during standing after heavy resistance exercise. J Appl Physiol. 2012;112(11):1875–83.
Article
PubMed
Google Scholar
Romero SA, Cooke WH. Hyperventilation before resistance exercise: cerebral hemodynamics and orthostasis. Med Sci Sports Exerc. 2007;39(8):1302–7.
Article
PubMed
Google Scholar
Braz ID, Scott C, Simpson LL, Springham EL, Tan BW, Balanos GM, et al. Influence of muscle metaboreceptor stimulation on middle cerebral artery blood velocity in humans. Exp Physiol. 2014;99(11):1478–87.
Article
PubMed
Google Scholar
Fernandes IA, Mattos JD, Campos MO, Machado AC, Rocha MP, Rocha NG, et al. Selective α 1-adrenergic blockade disturbs the regional distribution of cerebral blood flow during static handgrip exercise. Am J Physiol Heart Circ Physiol. 2016;310(11):H1541–H8.
Article
PubMed
Google Scholar
Friedman D, Friberg L, Mitchell J, Secher N. Effect of axillary blockade on regional cerebral blood flow during static handgrip. J Appl Physiol. 1991;71(2):651–6.
Article
CAS
PubMed
Google Scholar
Giller CA, Giller AM, Cooper CR, Hatab MR. Evaluation of the cerebral hemodynamic response to rhythmic handgrip. J Appl Physiol. 2000;88(6):2205–13.
Article
CAS
PubMed
Google Scholar
Hartwich D, Fowler KL, Wynn LJ, Fisher JP. Differential responses to sympathetic stimulation in the cerebral and brachial circulations during rhythmic handgrip exercise in humans. Exp Physiol. 2010;95(11):1089–97.
Article
PubMed
Google Scholar
Hirasawa A, Sato K, Yoneya M, Sadamoto T, Bailey DM, Ogoh S. Heterogeneous regulation of brain blood flow during low-intensity resistance exercise. Med Sci Sports Exerc. 2016;48(9):1829–34.
Article
CAS
PubMed
Google Scholar
Imms F, Russo F, Iyawe V, Segal M. Cerebral blood flow velocity during and after sustained isometric skeletal muscle contractions in man. Clin Sci. 1998;94(4):353–8.
Article
CAS
Google Scholar
Ide K, Pott F, Van Lieshout J, Secher N. Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass. Acta Physiol Scand. 1998;162(1):13–20.
Article
CAS
PubMed
Google Scholar
Jorgensen LG, Perko G, Payne G, Secher NH. Effect of limb anesthesia on middle cerebral response to handgrip. Am J Physiol Heart Circ Physiol. 1993;264(2):H553–H9.
Article
CAS
Google Scholar
Jorgensen L, Perko M, Hanel B, Schroeder T, Secher N. Middle cerebral artery flow velocity and blood flow during exercise and muscle ischemia in humans. J Appl Physiol. 1992;72(3):1123–32.
Article
CAS
PubMed
Google Scholar
Kim Y-S, Krogh-Madsen R, Rasmussen P, Plomgaard P, Ogoh S, Secher NH, et al. Effects of hyperglycemia on the cerebrovascular response to rhythmic handgrip exercise. Am J Physiol Heart Circ Physiol. 2007;293(1):H467–H73.
Article
CAS
PubMed
Google Scholar
Linkis P, Jorgensen LG, Olesen H, Madsen P, Lassen N, Secher N. Dynamic exercise enhances regional cerebral artery mean flow velocity. J Appl Physiol. 1995;78(1):12–6.
Article
CAS
PubMed
Google Scholar
Ogoh S, Sato K, Akimoto T, Oue A, Hirasawa A, Sadamoto T. Dynamic cerebral autoregulation during and after handgrip exercise in humans. J Appl Physiol. 2010;108(6):1701–5.
Article
PubMed
Google Scholar
Pott F, Van Lieshout JJ, Ide K, Madsen P, Secher NH. Middle cerebral artery blood velocity during intense static exercise is dominated by a Valsalva maneuver. J Appl Physiol. 2003;94(4):1335–44.
Article
PubMed
Google Scholar
Vianna LC, Araújo CGS, Fisher JP. Influence of central command and muscle afferent activation on anterior cerebral artery blood velocity responses to calf exercise in humans. J Appl Physiol. 2009;107(4):1113–20.
Article
PubMed
Google Scholar
Washio T, Sasaki H, Ogoh S. Transcranial Doppler-determined change in posterior cerebral artery blood flow velocity does not reflect vertebral artery blood flow during exercise. Am J Physiol Heart Circ Physiol. 2017;312(4):H827–H31.
Article
PubMed
Google Scholar
Washio T, Vranish JR, Kaur J, Young BE, Katayama K, Fadel PJ, et al. Acute reduction in posterior cerebral blood flow following isometric handgrip exercise is augmented by lower body negative pressure. Phys Rep. 2018;6(20):e13886.
Article
Google Scholar
Ogoh S, Washio T, Paton JF, Fisher JP, Petersen LG. Gravitational effects on intracranial pressures and blood flow regulation in young men: a potential shunting role for the external carotid artery. J Appl Physiol. 2020.
Abidi S, Nili M, Serna S, Kim S, Hazlett C, Edgell H. Influence of sex, menstrual cycle, and oral contraceptives on cerebrovascular resistance and cardiorespiratory function during Valsalva or standing. J Appl Physiol. 2017;123(2):375–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deegan BM, Devine ER, Geraghty MC, Jones E, ÓLaighin G, Serrador JM. The relationship between cardiac output and dynamic cerebral autoregulation in humans. J Appl Physiol. 2010;109(5):1424–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Favre ME, Lim V, Falvo MJ, Serrador JM. Cerebrovascular reactivity and cerebral autoregulation are improved in the supine posture compared to upright in healthy men and women. PLoS One. 2020;15(3):e0229049.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minhas J, Panerai R, Robinson T. Sex differences in cerebral haemodynamics across the physiological range of PaCO2. Physiol Meas. 2018;39(10):105009.
Article
CAS
PubMed
Google Scholar
Miller KB, Howery AJ, Rivera-Rivera LA, Johnson SC, Rowley HA, Wieben O, et al. Age-related reductions in cerebrovascular reactivity using 4D flow MRI. Front Aging Neurosci. 2019;11:281.
Article
PubMed
PubMed Central
Google Scholar
Labrecque L, Rahimaly K, Imhoff S, Paquette M, Le Blanc O, Malenfant S, et al. Dynamic cerebral autoregulation is attenuated in young fit women. Phys Rep. 2019;7(2):e13984.
Article
Google Scholar
Favre ME, Serrador JM. Sex differences in cerebral autoregulation is unaffected by menstrual cycle phase in young, healthy women. Am J Physiol Heart Circ Physiol. 2019;316:H920–H33. https://doi.org/10.1152/ajpheart.00474.2018.
Article
CAS
PubMed
Google Scholar
Hackett DA, Chow C-M. The Valsalva maneuver: its effect on intra-abdominal pressure and safety issues during resistance exercise. J Strength Cond Res. 2013;27(8):2338–45.
Article
PubMed
Google Scholar
Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.
Article
PubMed
Google Scholar
Harman EA, Frykman PN, Clagett ER, Kraemer WJ. Intra-abdominal and intra-thoracic pressures during lifting and jumping. Med Sci Sports Exerc. 1988;20(2):195–201.
Article
CAS
PubMed
Google Scholar
Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36(4):674–88.
Article
PubMed
Google Scholar
Dawson SL, Panerai RB, Potter JF. Critical closing pressure explains cerebral hemodynamics during the Valsalva maneuver. J Appl Physiol. 1999;86(2):675–80.
Article
CAS
PubMed
Google Scholar
Sale D, Moroz D, McKelvie R, MacDougall J, McCartney N. Comparison of blood pressure response to isokinetic and weight-lifting exercise. Eur J Appl Physiol Occup Physiol. 1993;67(2):115–20.
Article
CAS
PubMed
Google Scholar
Kagaya A, Homma S. Brachial arterial blood flow during static handgrip exercise of short duration at varying intensities studied by a Doppler ultrasound method. Acta Physiol Scand. 1997;160(3):257–65.
Article
CAS
PubMed
Google Scholar
Ng A, Agre J, Hanson P, Harrington M, Nagle F. Influence of muscle length and force on endurance and pressor responses to isometric exercise. J Appl Physiol. 1994;76(6):2561–9.
Article
CAS
PubMed
Google Scholar
Stewart JM, Montgomery LD, Glover JL, Medow MS. Changes in regional blood volume and blood flow during static handgrip. Am J Physiol Heart Circ Physiol. 2007;292(1):H215–H23.
Article
CAS
PubMed
Google Scholar
McNeil CJ, Allen MD, Olympico E, Shoemaker JK, Rice CL. Blood flow and muscle oxygenation during low, moderate, and maximal sustained isometric contractions. Am J Phys Regul Integr Comp Phys. 2015;309(5):R475–R81.
CAS
Google Scholar
MacDougall J, Tuxen D, Sale D, Moroz J, Sutton J. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol. 1985;58(3):785–90.
Article
CAS
PubMed
Google Scholar
Lewis SF, Snell PG, Taylor WF, Hamra M, Graham RM, Pettinger WA, et al. Role of muscle mass and mode of contraction in circulatory responses to exercise. J Appl Physiol. 1985;58(1):146–51.
Article
CAS
PubMed
Google Scholar
Mitchell J, Payne F, Saltin B, Schibye B. The role of muscle mass in the cardiovascular response to static contractions. J Physiol. 1980;309(1):45–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palatini P, Mos L, Munari L, Valle F, Del Torre M, Rossi A, et al. Blood pressure changes during heavy-resistance exercise. J Hypertens Suppl. 1989;7(6):S72–3.
Article
CAS
PubMed
Google Scholar
McCartney N, McKelvie R, Martin J, Sale D, MacDougall J. Weight-training-induced attenuation of the circulatory response of older males to weight lifting. J Appl Physiol. 1993;74(3):1056–60.
Article
CAS
PubMed
Google Scholar
Poton R, Polito MD. Hemodynamic response to resistance exercise with and without blood flow restriction in healthy subjects. Clin Physiol Funct Imaging. 2016;36(3):231–6.
Article
PubMed
Google Scholar
Libardi CA, Catai AM, Miquelini M, Borghi-Silva A, Minatel V, Alvarez IF, et al. Hemodynamic responses to blood flow restriction and resistance exercise to muscular failure. Int J Sports Med. 2017;38(02):134–40.
PubMed
Google Scholar
Niewiadomski W, Pilis W, Laskowska D, Gąsiorowska A, Cybulski G, Strasz A. Effects of a brief Valsalva manoeuvre on hemodynamic response to strength exercises. Clin Physiol Funct Imaging. 2012;32(2):145–57.
Article
PubMed
Google Scholar
Lentini AC, McKelvie RS, McCartney N, Tomlinson CW, MacDougall JD. Left ventricular response in healthy young men during heavy-intensity weight-lifting exercise. J Appl Physiol. 1993;75(6):2703–10.
Article
CAS
PubMed
Google Scholar
Paulo AC. Tricoli V. Queiroz AC: Laurentino G, Forjaz CL. Blood pressure response during resistance training of different work to rest ratio. J Strength Cond Res; 2017.
Google Scholar
Balmain B, Stewart G, Yamada A, Chan J, Haseler L, Sabapathy S. The impact of an experimentally induced increase in arterial blood pressure on left ventricular twist mechanics. Exp Physiol. 2016;101(1):124–34.
Article
CAS
PubMed
Google Scholar
Lalande S, Sawicki CP, Baker JR, Shoemaker JK. Effect of age on the hemodynamic and sympathetic responses at the onset of isometric handgrip exercise. J Appl Physiol. 2013;116(2):222–7.
Article
PubMed
PubMed Central
Google Scholar
Stöhr EJ, Stembridge M, Shave R, Samuel TJ, Stone K, Esformes JI. Systolic and diastolic left ventricular mechanics during and after resistance exercise. Med Sci Sports Exerc. 2017;49(10):2025–31.
Article
PubMed
Google Scholar
O'Donnell TV, McIlroy MB. The circulatory effects of squatting. Am Heart J. 1962;64(3):347–56.
Article
CAS
PubMed
Google Scholar
Krediet CP, de Bruin IG, Ganzeboom KS, Linzer M, van Lieshout JJ, Wieling W. Leg crossing, muscle tensing, squatting, and the crash position are effective against vasovagal reactions solely through increases in cardiac output. J Appl Physiol. 2005;99(5):1697–703.
Article
PubMed
Google Scholar
Ainslie PN, Ogoh S. Regulation of cerebral blood flow in mammals during chronic hypoxia: a matter of balance. Exp Physiol. 2010;95(2):251–62.
Article
PubMed
Google Scholar
Ogoh S, Dalsgaard M, Secher N, Raven P. Dynamic blood pressure control and middle cerebral artery mean blood velocity variability at rest and during exercise in humans. Acta Physiol. 2007;191(1):3–14.
Article
CAS
Google Scholar
Ogoh S, Hayashi N, Inagaki M, Ainslie PN, Miyamoto T. Interaction between the ventilatory and cerebrovascular responses to hypo-and hypercapnia at rest and during exercise. J Physiol. 2008;586(17):4327–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ainslie PN, Barach A, Murrell C, Hamlin M, Hellemans J, Ogoh S. Alterations in cerebral autoregulation and cerebral blood flow velocity during acute hypoxia: rest and exercise. Am J Physiol Heart Circ Physiol. 2007;292(2):H976–H83.
Article
CAS
PubMed
Google Scholar
Miyazawa T, Horiuchi M, Ichikawa D, Subudhi AW, Sugawara J, Ogoh S. Face cooling with mist water increases cerebral blood flow during exercise: effect of changes in facial skin blood flow. Front Physiol. 2012;3.
Ide K, Boushel R, Sørensen H, Fernandes A, Cai Y, Pott F, et al. Middle cerebral artery blood velocity during exercise with beta-1 adrenergic and unilateral stellate ganglion blockade in humans. Acta Physiol Scand. 2000;170(1):33–8.
Article
CAS
PubMed
Google Scholar
Jorgensen LG, Perko G, Secher NH. Regional cerebral artery mean flow velocity and blood flow during dynamic exercise in humans. J Appl Physiol. 1992;73(5):1825–30.
Article
CAS
PubMed
Google Scholar
Sato K, Ogoh S, Hirasawa A, Oue A, Sadamoto T. The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans. J Physiol. 2011;589(11):2847–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Madsen PL, Sperling BRK, Warming T, Schmidt J, Secher N, Wildschiodtz G, et al. Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise. J Appl Physiol. 1993;74(1):245–50.
Article
CAS
PubMed
Google Scholar
Herholz K, Buskies W, Rist M, Pawlik G, Hollmann W, Heiss W. Regional cerebral blood flow in man at rest and during exercise. J Neurol. 1987;234(1):9–13.
Article
CAS
PubMed
Google Scholar
Ogoh S, Fadel PJ, Zhang R, Selmer C, Jans Ø, Secher NH, et al. Middle cerebral artery flow velocity and pulse pressure during dynamic exercise in humans. Am J Physiol Heart Circ Physiol. 2005;288(4):H1526–H31.
Article
CAS
PubMed
Google Scholar
Faull O, Cotter J, Lucas S. Cerebrovascular responses during rowing: do circadian rhythms explain morning and afternoon performance differences? Scand J Med Sci Sports. 2015;25(4):467–75.
Article
CAS
PubMed
Google Scholar
Pott F, Knudsen L, Nowak M, Nielsen H, Hanel B, Secher N. Middle cerebral artery blood velocity during rowing. Acta Physiol Scand. 1997;160(3):251–5.
Article
CAS
PubMed
Google Scholar
Furlong RJ, Weaver SR, Sutherland R, Burley CV, Imi GM, Lucas RA, et al. Exercise-induced elevations in cerebral blood velocity are greater in running compared to cycling at higher intensities. Phys Rep. 2020;8(15):e14539.
CAS
Google Scholar
Lyngeraa T, Pedersen LM, Mantoni T, Belhage B, Rasmussen L, van Lieshout J, et al. Middle cerebral artery blood velocity during running. Scand J Med Sci Sports. 2013;23(1):e32–e7.
Article
CAS
PubMed
Google Scholar
Green DJ, Hopman MT, Padilla J, Laughlin MH, Thijssen DH. Vascular adaptation to exercise in humans: role of hemodynamic stimuli. Physiol Rev. 2017;97(2):495–528.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brys M, Brown CM, Marthol H, Franta R, Hilz MJ. Dynamic cerebral autoregulation remains stable during physical challenge in healthy persons. Am J Physiol Heart Circ Physiol. 2003;285(3):H1048–H54.
Article
CAS
PubMed
Google Scholar
Tsukamoto H, Hashimoto T, Olesen ND, Petersen LG, Sørensen H, Nielsen HB, et al. Dynamic cerebral autoregulation is maintained during high-intensity interval exercise. Med Sci Sports Exerc. 2019;51(2):372–8.
Article
PubMed
Google Scholar
Hamner J, Ishibashi K, Tan CO. Revisiting human cerebral blood flow responses to augmented blood pressure oscillations. J Physiol. 2019;597(6):1553–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang R, Zuckerman JH, Giller CA, Levine BD. Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol Heart Circ Physiol. 1998;274(1):233–41.
Article
Google Scholar
Brassard P, Ferland-Dutil H, Smirl JD, Paquette M, Le Blanc O, Malenfant S, et al. Evidence for hysteresis in the cerebral pressure-flow relationship in healthy men. Am J Physiol Heart Circ Physiol. 2017;312(4):H701–H4.
Article
PubMed
Google Scholar
Tzeng YC, Willie CK, Atkinson G, Lucas SJE, Wong A, Ainslie PN. Cerebrovascular regulation during transient hypotension and hypertension in humans. Hypertension. 2010;56(2):268–73.
Article
CAS
PubMed
Google Scholar
Panerai RB, Barnes SC, Nath M, Ball N, Robinson TG, Haunton VJ. Directional sensitivity of dynamic cerebral autoregulation in squat-stand maneuvers. Integrative and Comparative Physiology: American Journal of Physiology-Regulatory; 2018.
Book
Google Scholar
Claassen JA, Levine BD, Zhang R. Dynamic cerebral autoregulation during repeated squat-stand maneuvers. J Appl Physiol (1985). 2009;106(1):153–60. https://doi.org/10.1152/japplphysiol.90822.2008.
Article
Google Scholar
Miyachi M, Kawano H, Sugawara J, Takahashi K, Hayashi K, Yamazaki K, et al. Unfavorable effects of resistance training on central arterial compliance a randomized intervention study. Circulation. 2004;110(18):2858–63.
Article
PubMed
Google Scholar
Tzeng YC, Chan GSH, Willie CK, Ainslie PN. Determinants of human cerebral pressure–flow velocity relationships: new insights from vascular modelling and Ca2+ channel blockade. J Physiol. 2011;589(13):3263–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perry BG, Cotter JD, Korad S, Lark S, Labrecque L, Brassard P, et al. Implications of habitual endurance and resistance exercise for dynamic cerebral autoregulation. Exp Physiol. 2019. https://doi.org/10.1113/EP087675.
Nakamura N, Muraoka I. Resistance training augments cerebral blood flow pulsatility: cross-sectional study. Am J Hypertens. 2018;31(7):811–7.
Article
CAS
PubMed
Google Scholar
Zhang R, Witkowski S, Fu Q, Claassen JAHR, Levine BD. Cerebral hemodynamics after short-and long-term reduction in blood pressure in mild and moderate hypertension. Hypertension. 2007;49(5):1149–55.
Article
CAS
PubMed
Google Scholar
Sato K, Hirasawa A, Tsunoda N, Taniguchi Y, Sadamoto T. Cerebrovascular response during heavy upper body exercise: effect of mode of ventilation on blood flow velocity in the middle cerebral artery. Oxygen Transport to Tissue XXXI: Springer; 2010. p. 347–52.
Yamaguchi Y, Kashima H, Fukuba Y, Hayashi N. Cerebral blood flow and neurovascular coupling during static exercise. J Physiol Sci. 2014;64(3):195–201.
Article
PubMed
Google Scholar
Sato K, Fisher JP, Seifert T, Overgaard M, Secher NH, Ogoh S. Blood flow in internal carotid and vertebral arteries during orthostatic stress. Exp Physiol. 2012;97(12):1272–80.
Article
PubMed
Google Scholar
Ogoh S, Sato K, Okazaki K, Miyamoto T, Hirasawa A, Sadamoto T, et al. Blood flow in internal carotid and vertebral arteries during graded lower body negative pressure in humans. Exp Physiol. 2015;100(3):259–66.
Article
PubMed
Google Scholar
Lewis NC, Smith KJ, Bain AR, Wildfong KW, Numan T, Ainslie PN. Impact of transient hypotension on regional cerebral blood flow in humans. Clin Sci. 2015;129(2):169–78.
Article
CAS
Google Scholar
Sato K, Sadamoto T, Hirasawa A, Oue A, Subudhi AW, Miyazawa T, et al. Differential blood flow responses to CO2 in human internal and external carotid and vertebral arteries. J Physiol. 2012;590(14):3277–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skow RJ, MacKay CM, Tymko MM, Willie CK, Smith KJ, Ainslie PN, et al. Differential cerebrovascular CO2 reactivity in anterior and posterior cerebral circulations. Respir Physiol Neurobiol. 2013;189(1):76–86.
Article
PubMed
Google Scholar
Rogers HB, Schroeder T, Secher NH, Mitchell JH. Cerebral blood flow during static exercise in humans. J Appl Physiol. 1990;68(6):2358–61.
Article
CAS
PubMed
Google Scholar
Brown SP, Clemons JM, He Q, Liu S. Effects of resistance exercise and cycling on recovery blood pressure. J Sports Sci. 1994;12(5):463–8. https://doi.org/10.1080/02640419408732196.
Article
CAS
PubMed
Google Scholar
Fisher MM. The effect of resistance exercise on recovery blood pressure in normotensive and borderline hypertensive women. J Strength Cond Res. 2001;15(2):210–6.
CAS
PubMed
Google Scholar
de Vos NJ, Singh NA, Ross DA, Stavrinos TM, Orr R, Singh MAF. Continuous hemodynamic response to maximal dynamic strength testing in older adults. Arch Phys Med Rehabil. 2008;89(2):343–50.
Article
PubMed
Google Scholar
Lefferts WK, Augustine JA, Heffernan KS. Effect of acute resistance exercise on carotid artery stiffness and cerebral blood flow pulsatility. Front Physiol. 2014;5:101.
Article
PubMed
PubMed Central
Google Scholar
Sejersted O, Hargens AR, Kardel KR, Blom P, Jensen O, Hermansen L. Intramuscular fluid pressure during isometric contraction of human skeletal muscle. J Appl Physiol. 1984;56(2):287–95.
Article
CAS
PubMed
Google Scholar
Fahs CA, Heffernan KS, Fernhall B. Hemodynamic and vascular response to resistance exercise with L-arginine. Med Sci Sports Exerc. 2009;41(4):773–9.
Article
CAS
PubMed
Google Scholar
Barcroft H, Millen J. The blood flow through muscle during sustained contraction. J Physiol. 1939;97(1):17–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sjøgaard G, Savard G, Juel C. Muscle blood flow during isometric activity and its relation to muscle fatigue. Eur J Appl Physiol Occup Physiol. 1988;57(3):327–35.
Article
PubMed
Google Scholar
Rossberg F, Peňaz J. Initial cardiovascular response on change of posture from squatting to standing. Eur J Appl Physiol Occup Physiol. 1988;57(1):93–7.
Article
CAS
PubMed
Google Scholar
Folkow B, Haglund U, Jodal M, Lundgren O. Blood flow in the calf muscle of man during heavy rhythmic exercise. Acta Physiol Scand. 1971;81(2):157–63.
Article
CAS
PubMed
Google Scholar
Walløe L, Wesche J. Time course and magnitude of blood flow changes in the human quadriceps muscles during and following rhythmic exercise. J Physiol. 1988;405(1):257–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Corcondilas A, Koroxenidis GT, Shepherd JT. Effect of a brief contraction of forearm muscles on forearm blood flow. J Appl Physiol. 1964;19(1):142–6.
Article
CAS
PubMed
Google Scholar
Sullivan J, Hanson P, Rahko PS, Folts JD. Continuous measurement of left ventricular performance during and after maximal isometric deadlift exercise. Circulation. 1992;85(4):1406–13.
Article
CAS
PubMed
Google Scholar
Smit AAJ, Halliwill JR, Low PA, Wieling W. Pathophysiological basis of orthostatic hypotension in autonomic failure. J Physiol. 1999;519(1):1–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harms M, Wesseling K, Pott F, Jenstrup M, Van Goudoever J, Secher N, et al. Continuous stroke volume monitoring by modelling flow from non-invasive measurement of arterial pressure in humans under orthostatic stress. Clin Sci. 1999;97(3):291–301.
Article
CAS
Google Scholar
Wieling W, Krediet C, van Dijk N, Linzer M, Tschakovsky M. Initial orthostatic hypotension: review of a forgotten condition. Clin Sci. 2007;112:157–65.
Article
Google Scholar
Thomas KN, Cotter JD, Galvin SD, Williams MJA, Willie CK, Ainslie PN. Initial orthostatic hypotension is unrelated to orthostatic tolerance in healthy young subjects. J Appl Physiol. 2009;107(2):506–17.
Article
PubMed
Google Scholar
Schondorf R, Benoit J, Wein T. Cerebrovascular and cardiovascular measurements during neurally mediated syncope induced by head-up tilt. Stroke. 1997;28(8):1564–8.
Article
CAS
PubMed
Google Scholar
Poulin MJ, Liang PJ, Robbins PA. Fast and slow components of cerebral blood flow response to step decreases in end-tidal in humans. J Appl Physiol. 1998;85(2):388–97.
Article
CAS
PubMed
Google Scholar
Pollock ML, Franklin BA, Balady GJ, Chaitman BL, Fleg JL, Fletcher B, et al. Resistance exercise in individuals with and without cardiovascular disease: benefits, rationale, safety, and prescription an advisory from the committee on exercise, rehabilitation, and prevention, council on clinical cardiology, American Heart Association. Circulation. 2000;101(7):828–33.
Article
CAS
PubMed
Google Scholar
Shaw BS, Shaw I, Brown GA. Resistance exercise is medicine: Strength training in health promotion and rehabilitation. Int J Ther Rehabil. 2015;22(8):385–9.
Article
Google Scholar
Ainslie PN, Hoiland RL. Transcranial Doppler ultrasound: valid, invalid, or both?: Am Physiological Soc; 2014.
Google Scholar
Coverdale NS, Gati JS, Opalevych O, Perrotta A, Shoemaker JK. Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia. J Appl Physiol. 2014;117(10):1090–6.
Article
PubMed
Google Scholar
Verbree J, Bronzwaer A-SG, Ghariq E, Versluis MJ, Daemen MJ, van Buchem MA, et al. Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI. J Appl Physiol. 2014;117(10):1084–9.
Article
PubMed
Google Scholar
Thomas KN, Lewis NC, Hill BG, Ainslie PN. Technical recommendations for the use of carotid duplex ultrasound for the assessment of extracranial blood flow. Am J Phys Regul Integr Comp Phys. 2015;309(7):R707–R20.
CAS
Google Scholar
Thomas KN, Gibbons TD, Necas M. Letter to the Editor: Imaging Transcranial Doppler Ultrasound: is it giving us an accurate picture of cerebral hemodynamics? Am J Phys Regul Integr Comp Phys. 2020;319(1):R79–80.
CAS
Google Scholar
Tymko MM, Ainslie PN, Smith KJ. Evaluating the methods used for measuring cerebral blood flow at rest and during exercise in humans. Eur J Appl Physiol. 2018;118(8):1527–38.
Article
CAS
PubMed
Google Scholar