Lewis GD, Farrell L, Wood MJ, Martinovic M, Arany Z, Rowe GC, et al. Metabolic signatures of exercise in human plasma. Sci Transl Med. 2010;2(33):33ra7. https://doi.org/10.1126/scitranslmed.3001006.
Article
Google Scholar
Pitsiladis YP, Maughan RJ. The effects of exercise and diet manipulation on the capacity to perform prolonged exercise in the heat and in the cold in trained humans. J Physiol. 1999;517(Pt 3):919–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lac G, Maso F. Biological markers for the follow-up of athletes throughout the training season. Pathologie-biologie. 2004;52(1):43–9. https://doi.org/10.1016/S0369-8114(03)00049-X.
Article
CAS
PubMed
Google Scholar
Rietjens GJ, Kuipers H, Adam JJ, Saris WH, van Breda E, van Hamont D, et al. Physiological, biochemical and psychological markers of strenuous training-induced fatigue. Int J Sports Med. 2005;26(1):16–26. https://doi.org/10.1055/s-2004-817914.
Article
CAS
PubMed
Google Scholar
Yan B, A J, Wang G, Lu H, Huang X, Liu Y et al. Metabolomic investigation into variation of endogenous metabolites in professional athletes subject to strength-endurance training. J Appl Physiol 2009;106(2):531-538. doi:https://doi.org/10.1152/japplphysiol.90816.2008.
Bogdanis GC. Effects of physical activity and inactivity on muscle fatigue. Front Physiol. 2012;3:142. https://doi.org/10.3389/fphys.2012.00142.
Article
PubMed
PubMed Central
Google Scholar
Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov. 2002;1(2):153–61. https://doi.org/10.1038/nrd728.
Article
CAS
PubMed
Google Scholar
Heaney LM, Deighton K, Suzuki T. Non-targeted metabolomics in sport and exercise science. J Sports Sci. 2017:1–9. https://doi.org/10.1080/02640414.2017.1305122.
Morris C, Grada CO, Ryan M, Roche HM, De Vito G, Gibney MJ, et al. The relationship between aerobic fitness level and metabolic profiles in healthy adults. Mol Nutr Food Res. 2013;57(7):1246–54. https://doi.org/10.1002/mnfr.201200629.
Article
CAS
PubMed
Google Scholar
Goodwin ML, Harris JE, Hernandez A, Gladden LB. Blood lactate measurements and analysis during exercise: a guide for clinicians. J Diabetes Sci Technol. 2007;1(4):558–69.
Article
PubMed
PubMed Central
Google Scholar
Berton R, Conceicao MS, Libardi CA, Canevarolo RR, Gaspari AF, Chacon-Mikahil MP, et al. Metabolic time-course response after resistance exercise: a metabolomics approach. J Sports Sci. 2017;35(12):1211–8. https://doi.org/10.1080/02640414.2016.1218035.
Article
PubMed
Google Scholar
Dudzinska W, Lubkowska A, Dolegowska B, Safranow K, Jakubowska K. Adenine, guanine and pyridine nucleotides in blood during physical exercise and restitution in healthy subjects. Eur J Appl Physiol. 2010;110(6):1155–62. https://doi.org/10.1007/s00421-010-1611-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howarth KR, LeBlanc PJ, Heigenhauser GJ, Gibala MJ. Effect of endurance training on muscle TCA cycle metabolism during exercise in humans. J Appl Physiol. 2004;97(2):579–84. https://doi.org/10.1152/japplphysiol.01344.2003.
Article
CAS
PubMed
Google Scholar
Peake JM, Tan SJ, Markworth JF, Broadbent JA, Skinner TL, Cameron-Smith D. Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. Am J Physiol Endocrinol Metab. 2014;307(7):E539–52. https://doi.org/10.1152/ajpendo.00276.2014.
Article
CAS
PubMed
Google Scholar
Henriksson J. Effect of exercise on amino acid concentrations in skeletal muscle and plasma. J Exp Biol. 1991;160:149–65.
CAS
PubMed
Google Scholar
Leibowitz A, Klin Y, Gruenbaum BF, Gruenbaum SE, Kuts R, Dubilet M, et al. Effects of strong physical exercise on blood glutamate and its metabolite 2-ketoglutarate levels in healthy volunteers. Acta Neurobiol Exp. 2012;72(4):385–96.
Google Scholar
Sahlin K, Katz A, Broberg S. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am J Phys. 1990;259(5 Pt 1):C834–41.
Article
CAS
Google Scholar
Eriksson LS, Broberg S, Bjorkman O, Wahren J. Ammonia metabolism during exercise in man. Clin Physiol. 1985;5(4):325–36.
Article
CAS
PubMed
Google Scholar
Sato K, Iemitsu M, Katayama K, Ishida K, Kanao Y, Saito M. Responses of sex steroid hormones to different intensities of exercise in endurance athletes. Exp Physiol. 2016;101(1):168–75. https://doi.org/10.1113/EP085361.
Article
CAS
PubMed
Google Scholar
Asmussen E. Similarities and dissimilarities between static and dynamic exercise. Circ Res. 1981;48(6 Pt 2):I3–10.
CAS
PubMed
Google Scholar
Mitchell JH, Haskell W, Snell P, Van Camp SP. Task Force 8: classification of sports. J Am Coll Cardiol. 2005;45(8):1364–7. https://doi.org/10.1016/j.jacc.2005.02.015.
Article
PubMed
Google Scholar
Evans AM, Bridgewater BR, Liu Q, Mitchell MW, Robinson RJ, Dai H, et al. High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. Metabolomics. 2014;4(132) https://doi.org/10.4172/2153-0769.1000132.
DeHaven CD, Evans JM, Dai H, Lawton KA. Software techniques for enabling high-throughput analysis of metabolomic datasets. Metabolomics, Dr Ute Roessner (Ed), InTech. 2012;Chapter 7. doi:https://doi.org/10.5772/31277.
Smith AA, Toone R, Peacock O, Drawer S, Stokes KA, Cook CJ. Dihydrotestosterone is elevated following sprint exercise in healthy young men. J Appl Physiol. 2013;114(10):1435–40. https://doi.org/10.1152/japplphysiol.01419.2012.
Article
CAS
PubMed
Google Scholar
Budde H, Machado S, Ribeiro P, Wegner M. The cortisol response to exercise in young adults. Front Behav Neurosci. 2015;9:13. https://doi.org/10.3389/fnbeh.2015.00013.
Article
PubMed
PubMed Central
Google Scholar
Budde H, Pietrassyk-Kendziorra S, Bohm S, Voelcker-Rehage C. Hormonal responses to physical and cognitive stress in a school setting. Neurosci Lett. 2010;474(3):131–4. https://doi.org/10.1016/j.neulet.2010.03.015.
Article
CAS
PubMed
Google Scholar
Fietz D, Bakhaus K, Wapelhorst B, Grosser G, Gunther S, Alber J, et al. Membrane transporters for sulfated steroids in the human testis—cellular localization, expression pattern and functional analysis. PLoS One. 2013;8(5):e62638. https://doi.org/10.1371/journal.pone.0062638.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuqua JS, Rogol AD. Neuroendocrine alterations in the exercising human: implications for energy homeostasis. Metab Clin Exp. 2013;62(7):911–21. https://doi.org/10.1016/j.metabol.2013.01.016.
Article
CAS
PubMed
Google Scholar
Jacob MH, RJD d, Jahn MP, Kucharski LC, Bello-Klein A, Ribeiro MF. Age-related effects of DHEA on peripheral markers of oxidative stress. Cell Biochem Funct. 2010;28(1):52–7. https://doi.org/10.1002/cbf.1619.
Article
CAS
PubMed
Google Scholar
Ferrando AA, Sheffield-Moore M, Yeckel CW, Gilkison C, Jiang J, Achacosa A, et al. Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am J Physiol Endocrinol Metab. 2002;282(3):E601–7. https://doi.org/10.1152/ajpendo.00362.2001.
Article
CAS
PubMed
Google Scholar
Sato K, Iemitsu M, Aizawa K, Ajisaka R. Testosterone and DHEA activate the glucose metabolism-related signaling pathway in skeletal muscle. Am J Physiol Endocrinol Metab. 2008;294(5):E961–8. https://doi.org/10.1152/ajpendo.00678.2007.
Article
CAS
PubMed
Google Scholar
Belelli D, Gee KW. 5 alpha-pregnan-3 alpha,20 alpha-diol behaves like a partial agonist in the modulation of GABA-stimulated chloride ion uptake by synaptoneurosomes. Eur J Pharmacol. 1989;167(1):173–6.
Article
CAS
PubMed
Google Scholar
Harteneck C. Pregnenolone sulfate: from steroid metabolite to TRP channel ligand. Molecules. 2013;18(10):12012–28. https://doi.org/10.3390/molecules181012012.
Article
CAS
PubMed
Google Scholar
Fasolato C, Bertazzon A, Previero A, Galzigna L. Effect of 2-pyrrolidone on the concentration of GABA in rat tissues. Pharmacology. 1988;36(4):258–64.
Article
CAS
PubMed
Google Scholar
Powers ME, Yarrow JF, McCoy SC, Borst SE. Growth hormone isoform responses to GABA ingestion at rest and after exercise. Med Sci Sports Exerc. 2008;40(1):104–10. https://doi.org/10.1249/mss.0b013e318158b518.
Article
CAS
PubMed
Google Scholar
Hoppel CL. Carnitine and carnitine palmitoyltransferase in fatty acid oxidation and ketosis. Fed Proc. 1982;41(12):2853–7.
CAS
PubMed
Google Scholar
Karlic H, Lohninger A. Supplementation of L-carnitine in athletes: does it make sense? Nutrition. 2004;20(7-8):709–15. https://doi.org/10.1016/j.nut.2004.04.003.
Article
CAS
PubMed
Google Scholar
Walker JB. Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol. 1979;50:177–242.
CAS
PubMed
Google Scholar
Tullson PC, Terjung RL. Adenine nucleotide metabolism in contracting skeletal muscle. Exerc Sport Sci Rev. 1991;19:507–37.
Article
CAS
PubMed
Google Scholar
Graham TE. Caffeine and exercise: metabolism, endurance and performance. Sports Med. 2001;31(11):785–807.
Article
CAS
PubMed
Google Scholar
Boldyrev A, Abe H. Metabolic transformation of neuropeptide carnosine modifies its biological activity. Cell Mol Neurobiol. 1999;19(1):163–75.
Article
CAS
PubMed
Google Scholar
Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243–76. https://doi.org/10.1152/physrev.00031.2007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coburn RF, Baron C, Papadopoulos MT. Phosphoinositide metabolism and metabolism-contraction coupling in rabbit aorta. Am J Phys. 1988;255(6 Pt 2):H1476–83.
CAS
Google Scholar
Lecka-Czernik B, Moerman EJ, Grant DF, Lehmann JM, Manolagas SC, Jilka RL. Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology. 2002;143(6):2376–84. https://doi.org/10.1210/endo.143.6.8834.
Article
CAS
PubMed
Google Scholar
Circu ML, Aw TY. Glutathione and modulation of cell apoptosis. Biochim Biophys Acta. 2012;1823(10):1767–77. https://doi.org/10.1016/j.bbamcr.2012.06.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu SC. Regulation of glutathione synthesis. Mol Asp Med. 2009;30(1-2):42–59. https://doi.org/10.1016/j.mam.2008.05.005.
Article
CAS
Google Scholar
Yokoyama H. Gamma glutamyl transpeptidase (gammaGTP) in the era of metabolic syndrome. Nihon Arukoru Yakubutsu Igakkai zasshi = Jpn J Alcohol Studies Drug Depend. 2007;42(3):110–24.
CAS
Google Scholar
Yin P, Lehmann R, Xu G. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal Bioanal Chem. 2015;407(17):4879–92. https://doi.org/10.1007/s00216-015-8565-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams MH. Dietary supplements and sports performance: introduction and vitamins. J Int Soc Sports Nutr. 2004;1:1–6. https://doi.org/10.1186/1550-2783-1-2-1.
Article
PubMed
PubMed Central
Google Scholar
Naz S, Vallejo M, Garcia A, Barbas C. Method validation strategies involved in non-targeted metabolomics. J Chromatogr A. 2014;1353:99–105. https://doi.org/10.1016/j.chroma.2014.04.071.
Article
CAS
PubMed
Google Scholar
Van Hall G, Jensen-Urstad M, Rosdahl H, Holmberg HC, Saltin B, Calbet JA. Leg and arm lactate and substrate kinetics during exercise. Am J Physiol Endocrinol Metab. 2003;284(1):E193–205. https://doi.org/10.1152/ajpendo.00273.2002.
Article
CAS
PubMed
Google Scholar
Ormsbee MJ, Thyfault JP, Johnson EA, Kraus RM, Choi MD, Hickner RC. Fat metabolism and acute resistance exercise in trained men. J Appl Physiol. 2007;102(5):1767–72. https://doi.org/10.1152/japplphysiol.00704.2006.
Article
CAS
PubMed
Google Scholar
Goto K, Ishii N, Sugihara S, Yoshioka T, Takamatsu K. Effects of resistance exercise on lipolysis during subsequent submaximal exercise. Med Sci Sports Exerc. 2007;39(2):308–15. https://doi.org/10.1249/01.mss.0000246992.33482.cb.
Article
PubMed
Google Scholar
Sahlin K, Gorski J, Edstrom L. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle. Am J Phys. 1990;259(3 Pt 1):C409–12.
Article
CAS
Google Scholar
Chorell E, Moritz T, Branth S, Antti H, Svensson MB. Predictive metabolomics evaluation of nutrition-modulated metabolic stress responses in human blood serum during the early recovery phase of strenuous physical exercise. J Proteome Res. 2009;8(6):2966–77. https://doi.org/10.1021/pr900081q.
Article
CAS
PubMed
Google Scholar
Pohjanen E, Thysell E, Jonsson P, Eklund C, Silfver A, Carlsson IB, et al. A multivariate screening strategy for investigating metabolic effects of strenuous physical exercise in human serum. J Proteome Res. 2007;6(6):2113–20. https://doi.org/10.1021/pr070007g.
Article
CAS
PubMed
Google Scholar