Ronnestad BR, Nymark BS, Raastad T. Effects of in-season strength maintenance training frequency in professional soccer players. J Strength Cond Res. 2011;25(10):2653–60.
Article
PubMed
Google Scholar
Bogdanis GC, Papaspyrou A, Souglis A, Theos A, Sotiropoulos A, Maridaki M. Effects of hypertrophy and a maximal strength training programme on speed, force and power of soccer players. In: Reilly T, Korkusuz F, editors. Science and Football VI. The proceedings of the sixth world congress on science and football. New York: Routledge; 2009. p. 290–5.
Google Scholar
Bogdanis GC, Papaspyrou A, Souglis AG, Theos A, Sotiropoulos A, Maridaki M. Effects of Two Different Half-Squat Training Programs on Fatigue During Repeated Cycling Sprints in Soccer Players, Journal of strength and conditioning research / National Strength & Conditioning Association. 2011. May 12.
Google Scholar
Aagaard P, Trolle M, Simonsen E, Bangsbo J, Klausen K. High speed knee extension capacity of soccer players after different kinds of strength trainning. In: Reilly T, Clarys J, Stibbe A, editors. Science and Footbal II. London: F & FN Spon; 1993. p. 92–4.
Google Scholar
Trolle M, Aagaard P, Simonsen E, Bangsbo J, Klausen K. Effects of strength trainning on kicking performance in soccer. In: Reilly T, Clarys J, Stibbe A, editors. Science and Footbal II. London: F & FN Spon; 1993. p. 95–7.
Google Scholar
Ronnestad BR, Kvamme NH, Sunde A, Raastad T. Short-term effects of strength and plyometric training on sprint and jump performance in professional soccer players. J Strength Cond Res. 2008;22(3):773–80.
Article
PubMed
Google Scholar
Andersen JL, Klitgaard H, Bangsbo J, Saltin B. Myosin heavy chain isoforms in single fibres from m. vastus lateralis of soccer players: effects of strength-training. Acta Physiol Scand. 1994;150(1):21–6.
Article
CAS
PubMed
Google Scholar
Gorostiaga EM, Izquierdo M, Ruesta M, Iribarren J, Gonzalez-Badillo JJ, Ibanez J. Strength training effects on physical performance and serum hormones in young soccer players. Eur J Appl Physiol. 2004;91(5–6):698–707.
Article
CAS
PubMed
Google Scholar
Hoff J, Helgerud J. Endurance and strength training for soccer players: physiological considerations. Sports Med. 2004;34(3):165–80.
Article
PubMed
Google Scholar
Kotzamanidis C, Chatzopoulos D, Michailidis C, Papaiakovou G, Patikas D. The effect of a combined high-intensity strength and speed training program on the running and jumping ability of soccer players. J Strength Cond Res. 2005;19(2):369–75.
PubMed
Google Scholar
Manolopoulos E, Papadopoulos C, Kellis E. Effects of combined strength and kick coordination training on soccer kick biomechanics in amateur players. Scand J Med Sci Sports. 2006;16(2):102–10.
Article
CAS
PubMed
Google Scholar
Impellizzeri FM, Rampinini E, Castagna C, Martino F, Fiorini S, Wisloff U. Effect of plyometric training on sand versus grass on muscle soreness and jumping and sprinting ability in soccer players. Br J Sports Med. 2008;42(1):42–6.
Article
CAS
PubMed
Google Scholar
Nunez VM, Da Silva-Grigoletto ME, Castillo EF, Poblador MS, Lancho JL. Effects of training exercises for the development of strength and endurance in soccer. J Strength Cond Res. 2008;22(2):518–24.
Article
PubMed
Google Scholar
Chelly MS, Fathloun M, Cherif N, Ben Amar M, Tabka Z, Van Praagh E. Effects of a back squat training program on leg power, jump, and sprint performances in junior soccer players. J Strength Cond Res. 2009;23(8):2241–9.
Article
PubMed
Google Scholar
Mujika I, Santisteban J, Castagna C. In-season effect of short-term sprint and power training programs on elite junior soccer players. J Strength Cond Res. 2009;23(9):2581–7.
Article
PubMed
Google Scholar
Thomas K, French D, Hayes PR. The effect of two plyometric training techniques on muscular power and agility in youth soccer players. J Strength Cond Res. 2009;23(1):332–5.
Article
PubMed
Google Scholar
Aagaard P, Andersen JL. Effects of strength training on endurance capacity in top-level endurance athletes. Scand J Med Sci Sports. 2010;20:39–47.
Article
PubMed
Google Scholar
Lopez-Segovia M, Palao Andres JM, Gonzalez-Badillo JJ. Effect of 4 months of training on aerobic power, strength, and acceleration in two under-19 soccer teams. J Strength Cond Res. 2010;24(10):2705–14.
Article
PubMed
Google Scholar
Maio Alves JM, Rebelo AN, Abrantes C, Sampaio J. Short-term effects of complex and contrast training in soccer players’ vertical jump, sprint, and agility abilities. J Strength Cond Res. 2010;24(4):936–41.
Article
PubMed
Google Scholar
Wong PL, Chaouachi A, Chamari K, Dellal A, Wisloff U. Effect of preseason concurrent muscular strength and high-intensity interval training in professional soccer players. J Strength Cond Res. 2010;24(3):653–60.
Article
PubMed
Google Scholar
Sedano S, Matheu A, Redondo JC, Cuadrado G. Effects of plyometric training on explosive strength, acceleration capacity and kicking speed in young elite soccer players. J Sports Med Phys Fitness. 2011;51(1):50–8.
CAS
PubMed
Google Scholar
Loturco I, Ugrinowitsch C, Tricoli V, Pivetti B, Roschel H. Different loading schemes in power training during the preseason promote similar performance improvements in Brazilian elite soccer players. J Strength Cond Res. 2013;27(7):1791–7.
Article
PubMed
Google Scholar
Los Arcos A, Yanci J, Mendiguchia J, Salinero JJ, Brughelli M, Castagna C. Short-term training effects of vertically and horizontally oriented exercises on neuromuscular performance in professional soccer players. Int J Sports Physiol Perform. 2014;9(3):480–8.
Article
PubMed
Google Scholar
Jovanovic M, Sporis G, Omrcen D, Fiorentini F. Effects of speed, agility, quickness training method on power performance in elite soccer players. J Strength Cond Res. 2011;25(5):1285–92.
Article
PubMed
Google Scholar
Ebben WP, Watts P. A review of combined weight training and plyometric training modes: Complex training. Strength Cond J. 1998;20:18–27.
Article
Google Scholar
Saez de Villarreal E, Requena B, Izquierdo M, Gonzalez-Badillo JJ. Enhancing sprint and strength performance: combined versus maximal power, traditional heavy-resistance and plyometric training. J Sci Med. 2013;16(2):146–50.
Google Scholar
Harris N, Cronin J, Keogh J. Contraction force specificity and its relationship to functional performance. J Sports Sci. 2007;25(2):201–12.
Article
PubMed
Google Scholar
Billot M, Martin A, Paizis C, Cometti C, Babault N. Effects of an electrostimulation training program on strength, jumping, and kicking capacities in soccer players. J Strength Cond Res. 2010;24(5):1407–13.
Article
PubMed
Google Scholar
Young W. Transfer of strength and power training to sports performance. Int J Sports Physiol Perform. 2006;1:74–83.
PubMed
Google Scholar
Schmidtbleicher D. Training for power events. In: Chem PV, editor. Strength and Power in Sports. Boston: Blackwell Scientific; 1992. p. 381-95
Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: Part 1–biological basis of maximal power production. Sports Med. 2011;41(1):17–38.
Article
PubMed
Google Scholar
Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med. 2006;36(2):133–49.
Article
PubMed
Google Scholar
Toigo M, Boutellier U. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol. 2006;97(6):643–63.
Article
PubMed
Google Scholar
Hakkinen K, Alen M, Kraemer WJ, Gorostiaga E, Izquierdo M, Rusko H, et al. Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol. 2003;89(1):42–52.
Article
CAS
PubMed
Google Scholar
Hakkinen K, Komi PV, Alen M. Effect of explosive type strength training on isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of leg extensor muscles. Acta Physiol Scand. 1985;125(4):587–600.
Article
CAS
PubMed
Google Scholar
Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93(4):1318–26.
Article
PubMed
Google Scholar
Helgerud J, Rodas G, Kemi OJ, Hoff J. Strength and endurance in elite football players. Int J Sports Med. 2011;32(9):677–82.
Article
CAS
PubMed
Google Scholar
McGawley K, Andersson PI. The order of concurrent training does not affect soccer-related performance adaptations. Int J Sports Med. 2013;34(11):983–90.
Article
CAS
PubMed
Google Scholar
Requena B, Gonzalez-Badillo JJ, de Villareal ES, Ereline J, Garcia I, Gapeyeva H, et al. Functional performance, maximal strength, and power characteristics in isometric and dynamic actions of lower extremities in soccer players. J Strength Cond Res. 2009;23(5):1391–401.
Article
PubMed
Google Scholar
Cometti G, Maffiuletti NA, Pousson M, Chatard JC, Maffulli N. Isokinetic Strength and Anaerobic Power of Elite, Subelite and Amateur Soccer Players. Int J Sports Med. 2001;22:45–51.
Article
CAS
PubMed
Google Scholar
Faude O, Koch T, Meyer T. Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci. 2012;30(7):625–31.
Article
PubMed
Google Scholar
Osgnach C, Poser S, Bernardini R, Rinaldo R, di Prampero PE. Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc. 2010;42(1):170–8.
Article
PubMed
Google Scholar
Gaudino P, Iaia FM, Alberti G, Strudwick AJ, Atkinson G, Gregson W. Monitoring training in elite soccer players: systematic bias between running speed and metabolic power data. Int J Sports Med. 2013;34(11):963–8.
Article
CAS
PubMed
Google Scholar
Wisloff U, Castagna C, Helgerud J, Jones R, Hoff J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br J Sports Med. 2004;38(3):285–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Keiner M, Sander A, Wirth K, Schmidtbleicher D. Long-term strength training effects on change-of-direction sprint performance. J Strength Cond Res. 2014;28(1):223–31.
Article
PubMed
Google Scholar
Silva JR, Magalhaes JF, Ascensao AA, Oliveira EM, Seabra AF, Rebelo AN. Individual match playing time during the season affects fitness-related parameters of male professional soccer players. J Strength Cond Res. 2011;25(10):2729–39.
Article
PubMed
Google Scholar
Dauty M, Potiron Josse M. Correlations and differences of performance between soccer players, professionals, young players and amateurs, from the 10-meter sprint test and knee isokinetic assessment. Sci Sports. 2004;19:75–9.
Article
Google Scholar
Koundourakis NE, Androulakis N, Spyridaki EC, Castanas E, Malliaraki N, Tsatsanis C, et al. Effect of different seasonal strength training protocols on circulating androgen levels and performance parameters in professional soccer players. Hormones. 2014;13(1):578–83.
Google Scholar
Sander A, Keiner M, Wirth K, Schmidtbleicher D. Influence of a 2-year strength training programme on power performance in elite youth soccer players. Eur J Sport Sci. 2013;13(5):445–51.
Article
PubMed
Google Scholar
Salaj S, Markovic G. Specificity of jumping, sprinting, and quick change-of-direction motor abilities. J Strength Cond Res. 2011;25(5):1249–55.
Article
PubMed
Google Scholar
Helgerud J, Kemi OJ, Hoff J. Pre-season concurrent strength and endurance development in elite soccer players. In: Hoff J, Helgerud J, editors. Football (soccer): new developments in physical training research. Trondheim: NTNU; 2002. p. 55–66.
Google Scholar
Brughelli M, Cronin J, Levin G, Chaouachi A. Understanding change of direction ability in sport: a review of resistance training studies. Sports Med. 2008;38(12):1045–63.
Article
PubMed
Google Scholar
Caldwell BP, Peters DM. Seasonal variation in physiological fitness of a semiprofessional soccer team. J Strength Cond Res. 2009;23(5):1370–7.
Article
PubMed
Google Scholar
Requena B, Saez-Saezde Villarreal E, Gapeyeva H, Ereline J, Garcia I, Paasuke M. Relationship between postactivation potentiation of knee extensor muscles, sprinting and vertical jumping performance in professional soccer players. J Strength Cond Res. 2011;25(2):367–73.
Article
PubMed
Google Scholar
Reilly T, Rigby M. Effect of an warm-down following competitive soccer. In: Spinks W, Reilly T, Murphy J, editors. Science and Football IV. London/New York: E&F. N. Spon; 2002. p. 226–9.
Google Scholar
Mohr M, Krustrup P, Bangsbo J. Fatigue in soccer: a brief review. J Sports Sci. 2005;23(6):593–9.
Article
PubMed
Google Scholar
Bangsbo J, Iaia FM, Krustrup P. Metabolic response and fatigue in soccer. Int J Sports Physiol Perform. 2007;2(2):111–27.
PubMed
Google Scholar
Reilly T, Drust B, Clarke N. Muscle fatigue during football match-play. Sports Med. 2008;38(5):357–67.
Article
PubMed
Google Scholar
Rampinini E, Bosio A, Ferraresi I, Petruolo A, Morelli A, Sassi A. Match-related fatigue in soccer players. Med Sci Sports Exerc. 2011;43(11):2161–70.
Article
PubMed
Google Scholar
Magalhaes J, Rebelo A, Oliveira E, Silva JR, Marques F, Ascensao A. Impact of Loughborough Intermittent Shuttle Test versus soccer match on physiological, biochemical and neuromuscular parameters. Eur J Appl Physiol. 2010;108(1):39–48.
Article
PubMed
Google Scholar
Rebelo N, Krustrup P, Soares J, Bangsbo J. Reduction in intermittent exercise performance during a soccer match. J Sport Sci. 1998;16:482–3.
Google Scholar
Silva JR, Ascensao A, Marques F, Seabra A, Rebelo A, Magalhaes J. Neuromuscular function, hormonal and redox status and muscle damage of professional soccer players after a high-level competitive match. Eur J Appl Physiol. 2013;113(9):2193–201.
Article
CAS
PubMed
Google Scholar
Krustrup P, Ortenblad N, Nielsen J, Nybo L, Gunnarsson TP, Iaia FM, et al. Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game. Eur J Appl Physiol. 2011;111(12):2987–95.
Article
PubMed
Google Scholar
Thompson D, Nicholas CW, Williams C. Muscular soreness following prolonged intermittent high-intensity shuttle running. J Sports Sci. 1999;17(5):387–95.
Article
CAS
PubMed
Google Scholar
Rahnama N, Reilly T, Lees A, Graham-Smith P. Muscle fatigue induced by exercise simulating the work rate of competitive soccer. J Sports Sci. 2003;21(11):933–42.
Article
CAS
PubMed
Google Scholar
Andersson H, Raastad T, Nilsson J, Paulsen G, Garthe I, Kadi F. Neuromuscular fatigue and recovery in elite female soccer: effects of active recovery. Med Sci Sports Exerc. 2008;40(2):372–80.
Article
PubMed
Google Scholar
Greig M. The influence of soccer-specific fatigue on peak isokinetic torque production of the knee flexors and extensors. Am J Sports Med. 2008;36(7):1403–9.
Article
PubMed
Google Scholar
Ispirlidis I, Fatouros IG, Jamurtas AZ, Nikolaidis MG, Michailidis I, Douroudos I, et al. Time-course of changes in inflammatory and performance responses following a soccer game. Clin J Sports Med J Acad Sport Med. 2008;18(5):423–31.
Article
Google Scholar
Gaudino P, Gaudino C, Alberti G, Minetti AE. Biomechanics and predicted energetics of sprinting on sand: hints for soccer training. J Sci Med Sport. 2013;16(3):271–5.
Article
PubMed
Google Scholar
Fyfe JJ, Bishop DJ, Stepto NK. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med. 2014;44(6):743–62.
Article
PubMed
Google Scholar
Apro W, Wang L, Ponten M, Blomstrand E, Sahlin K. Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle. Am J Physiol Endocrinol Metab. 2013;305(1):E22–32.
Article
CAS
PubMed
Google Scholar
Docherty D, Sporer B. A proposed model for examining the interference phenomenon between concurrent aerobic and strength training. Sports Med. 2000;30(6):385–94.
Article
CAS
PubMed
Google Scholar
Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, et al. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol. 1995;78(3):976–89.
CAS
PubMed
Google Scholar
Spiering BA, Kraemer WJ, Anderson JM, Armstrong LE, Nindl BC, Volek JS, et al. Resistance exercise biology: manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways. Sports Med. 2008;38(7):527–40.
Article
PubMed
Google Scholar
Hawley JA. Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab. 2009;34(3):355–61.
Article
CAS
PubMed
Google Scholar
Wang L, Mascher H, Psilander N, Blomstrand E, Sahlin K. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle. J Appl Physiol. 2011;111(5):1335–44.
Article
CAS
PubMed
Google Scholar
Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, Tesch PA. Aerobic exercise alters skeletal muscle molecular responses to resistance exercise. Med Sci Sports Exerc. 2012;44(9):1680–8.
Article
CAS
PubMed
Google Scholar
Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, Tesch PA. Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training. J Appl Physiol. 2013;114(1):81–9.
Article
PubMed
Google Scholar
Edwards AM, Clark NA. Thermoregulatory observations in soccer match play: professional and recreational level applications using an intestinal pill system to measure core temperature. Br J Sports Med. 2006;40(2):133–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cazzola R, Russo-Volpe S, Cervato G, Cestaro B. Biochemical assessments of oxidative stress, erythrocyte membrane fluidity and antioxidant status in professional soccer players and sedentary controls. Eur J Clin Invest. 2003;33(10):924–30.
Article
CAS
PubMed
Google Scholar
Brites FD, Evelson PA, Christiansen MG, Nicol MF, Basilico MJ, Wikinski RW, et al. Soccer players under regular training show oxidative stress but an improved plasma antioxidant status. Clin Sci (Lond). 1999;96(4):381–5.
Article
CAS
Google Scholar
Egorova ES, Borisova AV, Mustafina LJ, Arkhipova AA, Gabbasov RT, Druzhevskaya AM, et al. The polygenic profile of Russian football players. J Sports Sci. 2014;32(13):1286–93.
Article
PubMed
Google Scholar
Pimenta EM, Coelho DB, Veneroso CE, Barros Coelho EJ, Cruz IR, Morandi RF, et al. Effect of ACTN3 Gene on Strength and Endurance in Soccer Players. J Strength Cond Res. 2013;27(12):3286–92.
Article
PubMed
Google Scholar
Mustafina LJ, Naumov VA, Cieszczyk P, Popov DV, Lyubaeva EV, Kostryukova ES, et al. AGTR2 gene polymorphism is associated with muscle fibre composition, athletic status and aerobic performance. Exp Physiol. 2014;99(8):1042–52.
Article
CAS
PubMed
Google Scholar
Elliott MC, Wagner PP, Chiu L. Power athletes and distance training: physiological and biomechanical rationale for change. Sports Med. 2007;37(1):47–57.
Article
PubMed
Google Scholar
Reid MB. Invited Review: redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol. 2001;90(2):724–31.
Article
CAS
PubMed
Google Scholar
McNamara JM, Stearne DJ. Effect of concurrent training, flexible nonlinear periodization, and maximal-effort cycling on strength and power. J Strength Cond Res. 2013;27(6):1463–70.
Article
PubMed
Google Scholar
Meckel Y, Nemet D, Bar-Sela S, Radom-Aizik S, Cooper DM, Sagiv M, et al. Hormonal and inflammatory responses to different types of sprint interval training. J Strength Cond Res. 2011;25(8):2161–9.
Article
PubMed
Google Scholar
Wahl P. Hormonal and Metabolic Responses to High Intensity Interval Training. J Sports Med Doping Stud. 2013;3(1):e132.
Google Scholar
Wahl P, Mathes S, Achtzehn S, Bloch W, Mester J. Active vs. passive recovery during high-intensity training influences hormonal response. Int J Sports Med. 2014;35(7):583–9.
CAS
PubMed
Google Scholar
Wahl P, Mathes S, Kohler K, Achtzehn S, Bloch W, Mester J. Acute metabolic, hormonal, and psychological responses to different endurance training protocols. Horm Metab Res. 2013;45(11):827–33.
Article
CAS
PubMed
Google Scholar
Zinner C, Wahl P, Achtzehn S, Reed JL, Mester J. Acute hormonal responses before and after 2 weeks of HIT in well trained junior triathletes. Int J Sports Med. 2014;35(4):316–22.
CAS
PubMed
Google Scholar
Gunnarsson TP, Christensen PM, Holse K, Christiansen D, Bangsbo J. Effect of additional speed endurance training on performance and muscle adaptations. Med Sci Sports Exerc. 2012;44(10):1942–8.
Article
PubMed
Google Scholar
Ingebrigtsen J, Shalfawi SA, Tonnessen E, Krustrup P, Holtermann A. Performance effects of 6 weeks of aerobic production training in junior elite soccer players. J Strength Cond Res. 2013;27(7):1861–7.
Article
PubMed
Google Scholar
Iaia FM, Rampinini E, Bangsbo J. High-intensity training in football. Int J Sports Physiol Perform. 2009;4(3):291–306.
PubMed
Google Scholar
Wahl P, Guldner M, Mester J. Effects and sustainability of a 13-day high-intensity shock microcycle in soccer. J Sports Sci Med. 2014;13(2):259–65.
PubMed Central
PubMed
Google Scholar
Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575(Pt 3):901–11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol. 2005;98(6):1985–90.
Article
PubMed
Google Scholar
Gibala M. Molecular responses to high-intensity interval exercise. Appl Physiol Nutr Metab. 2009;34(3):428–32.
Article
CAS
PubMed
Google Scholar
Jensen L, Bangsbo J, Hellsten Y. Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. J Physiol. 2004;557(Pt 2):571–82.
Article
PubMed Central
CAS
PubMed
Google Scholar
Christensen PM, Krustrup P, Gunnarsson TP, Kiilerich K, Nybo L, Bangsbo J. VO2 kinetics and performance in soccer players after intense training and inactivity. Med Sci Sports Exerc. 2011;43(9):1716–24.
Article
PubMed
Google Scholar
Dupont G, Akakpo K, Berthoin S. The effect of in-season, high-intensity interval training in soccer players. J Strength Cond Res. 2004;18(3):584–9.
PubMed
Google Scholar
Cicioni-Kolsky D, Lorenzen C, Williams MD, Kemp JG. Endurance and sprint benefits of high-intensity and supramaximal interval training. Eur J Sport Sci. 2013;13(3):304–11.
Article
PubMed
Google Scholar
Issurin VB. Training transfer: scientific background and insights for practical application. Sports Med. 2013;43(8):675–94.
Article
PubMed
Google Scholar
Reilly T. Energetics of high-intensity exercise (soccer) with particular reference to fatigue. J Sports Sci. 1997;15(3):257–63.
Article
CAS
PubMed
Google Scholar
Bangsbo J, Mohr M, Krustrup P. Physical and metabolic demands of training and match-play in the elite football player. J Sports Sci. 2006;24(7):665–74.
Article
PubMed
Google Scholar
Stolen T, Chamari K, Castagna C, Wisloff U. Physiology of soccer: an update. Sports Med. 2005;35(6):501–36.
Article
PubMed
Google Scholar
Kraemer WJ, French DN, Paxton NJ, Hakkinen K, Volek JS, Sebastianelli WJ, et al. Changes in exercise performance and hormonal concentrations over a big ten soccer season in starters and nonstarters. J Strength Cond Res. 2004;18(1):121–8.
PubMed
Google Scholar
Akenhead R, Hayes PR, Thompson KG, French D. Diminutions of acceleration and deceleration output during professional football match play. J Sci Med Sport. 2013;16(6):556–61.
Article
PubMed
Google Scholar
Nummela AT, Paavolainen LM, Sharwood KA, Lambert MI, Noakes TD, Rusko HK. Neuromuscular factors determining 5 km running performance and running economy in well-trained athletes. Eur J Appl Physiol. 2006;97(1):1–8.
Article
PubMed
Google Scholar
Saunders PU, Telford RD, Pyne DB, Peltola EM, Cunningham RB, Gore CJ, et al. Short-term plyometric training improves running economy in highly trained middle and long distance runners. J Strength Cond Res. 2006;20(4):947–54.
PubMed
Google Scholar
Paavolainen L, Hakkinen K, Hamalainen I, Nummela A, Rusko H. Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol. 1999;86(5):1527–33.
CAS
PubMed
Google Scholar
Paavolainen LM, Nummela AT, Rusko HK. Neuromuscular characteristics and muscle power as determinants of 5-km running performance. Med Sci Sports Exerc. 1999;31(1):124–30.
Article
CAS
PubMed
Google Scholar
Castagna C, Impellizzeri F, Chamari K, Carlomagno D, Rampinini E. Aerobic fitness and Yo-Yo continous and intermittent tests performances in soccer players: A correlation study. J Strength Cond Res. 2006;20(2):320–5.
PubMed
Google Scholar
Brocherie F, Girard O, Forchino F, Al Haddad H, Dos Santos GA, Millet GP. Relationships between anthropometric measures and athletic performance, with special reference to repeated-sprint ability, in the Qatar national soccer team. J Sports Sci. 2014;17:1–12.
Article
Google Scholar
Arnason A, Sigurdsson SB, Gudmundsson A, Holme I, Engebretsen L, Bahr R. Physical fitness, injuries, and team performance in soccer. Med Sci Sports Exerc. 2004;36(2):278–85.
Article
PubMed
Google Scholar
Sporis G, Jovanovic M, Omrcen D, Matkovic B. Can the official soccer game be considered the most important contribution to player’s physical fitness level? J Sports Med Phys Fitness. 2011;51(3):374–80.
CAS
PubMed
Google Scholar
Silva JR, Magalhaes J, Ascensao A, Seabra AF, Rebelo AN. Training status and match activity of professional soccer players throughout a season. J Strength Cond Res. 2013;27(1):20–30.
Article
PubMed
Google Scholar
Meister S, Faude O, Ammann T, Schnittker R, Meyer T. Indicators for high physical strain and overload in elite football players. Scand J Med Sci Sports. 2013;23(2):156–63.
Article
CAS
PubMed
Google Scholar
Tonnessen E, Hem E, Leirstein S, Haugen T, Seiler S. Maximal aerobic power characteristics of male professional soccer players, 1989-2012. Int J Sports Physiol Perform. 2013;8(3):323–9.
PubMed
Google Scholar
Haugen TA, Tonnessen E, Seiler S. Anaerobic performance testing of professional soccer players 1995-2010. Int J Sports Physiol Perform. 2013;8(2):148–56.
PubMed
Google Scholar
Hill-Haas SV, Dawson B, Impellizzeri FM, Coutts AJ. Physiology of small-sided games training in football: a systematic review. Sports Med. 2011;41(3):199–220.
Article
PubMed
Google Scholar
Owen AL, Wong del P, McKenna M, Dellal A. Heart rate responses and technical comparison between small- vs. large-sided games in elite professional soccer. J Strength Cond Res. 2011;25(8):2104–10.
Article
PubMed
Google Scholar
Reinke S, Karhausen T, Doehner W, Taylor W, Hottenrott K, Duda GN, et al. The influence of recovery and training phases on body composition, peripheral vascular function and immune system of professional soccer players. PLoS One. 2009;4(3):e4910.
Article
PubMed Central
PubMed
CAS
Google Scholar
Sotiropoulos A, Travlos AK, Gissis I, Souglis AG, Grezios A. The effect of a 4-week training regimen on body fat and aerobic capacity of professional soccer players during the transition period. J Strength Cond Res. 2009;23(6):1697–703.
Article
PubMed
Google Scholar
Koundourakis NE, Androulakis NE, Malliaraki N, Tsatsanis C, Venihaki M, Margioris AN. Discrepancy between Exercise Performance, Body Composition, and Sex Steroid Response after a Six-Week Detraining Period in Professional Soccer Players. PLoS One. 2014;9(2):e87803.
Article
PubMed Central
PubMed
CAS
Google Scholar
Mohr M, Krustrup P, Bangsbo J. Physiological characteristics and exaustive exercise performance of elite soccer players. Med Sci Sports Exerc. 2002;34(5):S24. Supplement 1, May.
Article
Google Scholar
Krustrup P, Mohr M, Nybo L, Jensen JM, Nielsen JJ, Bangsbo J. The Yo-Yo IR2 test: physiological response, reliability, and application to elite soccer. Med Sci Sports Exerc. 2006;38(9):1666–73.
Article
PubMed
Google Scholar
Ostojic S. Seasonal alterations in body composition and sprint performance of elite soccer players. J Exerc Physiol Online. 2003;6(3):24–7.
Google Scholar
Filaire E, Lac G, Pequignot JM. Biological, hormonal, and psychological parameters in professional soccer players throughout a competitive season. Percept Mot Skills. 2003;97(3 Pt 2):1061–72.
Article
PubMed
Google Scholar
Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339–61.
Article
PubMed
Google Scholar
Schmikli SL, de Vries WR, Brink MS, Backx FJ. Monitoring performance, pituitary-adrenal hormones and mood profiles: how to diagnose non-functional over-reaching in male elite junior soccer players. Br J Sports Med. 2012;46(14):1019–23.
Article
PubMed
Google Scholar
Komi PV, Gollhofer A. Stretch reflexes can have an important role in force enhancement during SSC exercise. J Appl Biomech. 1997;13:451–60.
Google Scholar
Bangsbo J. The physiology of soccer - with special reference to intense intermittent exrcise. Acta Physiol Scand. 1994;150:615. suppl.
Article
Google Scholar
Wilson JM, Flanagan EP. The role of elastic energy in activities with high force and power requirements: a brief review. J Strength Cond Res. 2008;22(5):1705–15.
Article
PubMed
Google Scholar