Redondo-Useros N, Nova E, González-Zancada N, Díaz LE, Gómez-Martínez S, Marcos A. Microbiota and lifestyle: a special focus on diet. Nutrients. 2020;12:1776.
Article
CAS
Google Scholar
Dorelli B, Gallè F, De Vito C, Duranti G, Iachini M, Zaccarin M, et al. Can physical activity influence human gut microbiota composition independently of diet? A systematic review. Nutrients. 2021;13:1890.
Article
CAS
Google Scholar
Monda V, Villano I, Messina A, Valenzano A, Esposito T, Moscatelli F, et al. Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev. 2017;2017:3831972.
Article
Google Scholar
Šoltys K, Lendvorský L, Hric I, Baranovičová E, Penesová A, Mikula I, et al. Strenuous physical training, physical fitness, body composition and bacteroides to prevotella ratio in the gut of elderly athletes. Front Physiol. 2021;12: 670989.
Article
Google Scholar
Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63:1890.
Article
Google Scholar
Mohr AE, Jäger R, Carpenter KC, Kerksick CM, Purpura M, Townsend JR, et al. The athletic gut microbiota. J Int Soc Sports Nutr. 2020;17:24.
Article
Google Scholar
Denou E, Marcinko K, Surette MG, Steinberg GR, Schertzer JD. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol Endocrinol Metab. 2016;310:E982–93.
Article
Google Scholar
Wang G, Zhou H, Zhang L, Li R, Luo L, Yu Z, et al. Effects of high-intensity interval training on gut microbiota profiles in 12 months’ old ICR mice. J Physiol Biochem Spain. 2020;76:539–48.
Article
CAS
Google Scholar
Warbeck C, Dowd AJ, Kronlund L, Parmar C, Daun JT, Wytsma-Fisher K, et al. Feasibility and effects on the gut microbiota of a 12-week high-intensity interval training plus lifestyle education intervention on inactive adults with celiac disease. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2021;46:325–36.
Article
Google Scholar
Donati Zeppa S, Amatori S, Sisti D, Gervasi M, Agostini D, Piccoli G, et al. Nine weeks of high-intensity indoor cycling training induced changes in the microbiota composition in non-athlete healthy male college students. J Int Soc Sports Nutr. 2021;18:74. https://doi.org/10.1186/s12970-021-00471-z.
Article
PubMed
PubMed Central
Google Scholar
Hampton-Marcell JT, Eshoo TW, Cook MD, Gilbert JA, Horswill CA, Poretsky R. Comparative analysis of gut microbiota following changes in training volume among swimmers. Int J Sports Med. 2020;41:292–9.
Article
Google Scholar
Rettedal EA, Cree JME, Adams SE, MacRae C, Skidmore PM, Cameron-Smith D, et al. Short-term high intensity interval training (HIIT) exercise does not affect gut bacterial community diversity or composition of lean and overweight men. Exp Physiol. 2020;105:1268–79.
Article
CAS
Google Scholar
Hric I, Ugrayová S, Penesová A, Rádiková Ž, Kubáňová L, Šardzíková S, et al. The efficacy of short-term weight loss programs and consumption of natural probiotic bryndza cheese on gut microbiota composition in women. Nutrients. 2021;13:1753.
Article
CAS
Google Scholar
Grosicki GJ, Durk RP, Bagley JR. Rapid gut microbiome changes in a world-class ultramarathon runner. Physiol Rep. 2019;7: e14313.
Article
Google Scholar
Zhao X, Zhang Z, Hu B, Huang W, Yuan C, Zou L. Response of gut microbiota to metabolite changes induced by endurance exercise. Front Microbiol. 2018;9:765.
Article
Google Scholar
George Kerry R, Patra JK, Gouda S, Park Y, Shin H-S, Das G. Benefaction of probiotics for human health: a review. J Food Drug Anal. 2018;26:927–39.
Article
CAS
Google Scholar
Mathur H, Beresford TP, Cotter PD. Health Benefits of Lactic Acid Bacteria (LAB) Fermentates. Nutrients. 2020;12:1679.
Article
CAS
Google Scholar
Şanlier N, Gökcen BB, Sezgin AC. Health benefits of fermented foods. Crit Rev Food Sci Nutr. 2019;59:506–27.
Article
Google Scholar
Valero-Cases E, Cerdá-Bernad D, Pastor J-J, Frutos M-J. Non-dairy fermented beverages as potential carriers to ensure probiotics, prebiotics, and bioactive compounds arrival to the gut and their health benefits. Nutrients. 2020;12:1666.
Article
CAS
Google Scholar
Hellard P, Avalos-Fernandes M, Lefort G, Pla R, Mujika I, Toussaint J-F, et al. Elite swimmers’ training patterns in the 25 weeks prior to their season’s best performances: insights into periodization from a 20-years cohort. Front Physiol. 2019;10:363.
Article
Google Scholar
Kačániová M, Terentjeva M, Kunová S, Haščík P, Kowalczewski PŁ, Štefániková J. Diversity of microbiota in Slovak summer ewes’ cheese “Bryndza.” Open life Sci. 2021;16(1):277–86. https://doi.org/10.1515/biol-2021-0038.
Article
PubMed
PubMed Central
Google Scholar
Andrews S. FastQC A Quality control tool for high throughput sequence data. Babraham Bioinfo. 2018. p 3–5. https://github.com/s-andrews/FastQC
R Core Team [Internet]. R A Lang. Environ. Stat. Comput. R Found. Stat. Comput. Vienna, Austria. 2020. http://www.r-project.org/index.html
Kassambara A. rstatix: pipe-friendly framework for basic statistical tests. R package version 0.7.0 [Internet]. https://cran.r-project.org/web/packages/rstatix/index.html. 2021. https://cran.r-project.org/web/packages/rstatix/index.html
Kassambara A. ggpubr: “ggplot2” based publication ready plots. R package version 0.4.0.999. https://rpkgs.datanovia.com/ggpubr/. 2020.
Ishwaran H, Kogalur UB. Fast unified random forests for survival, regression, and classification (RF-SRC). 2020.
Dhand NK, Khatkar MS. An online statistical calculator. Sample size calculator for comparing two paired means. 2014. http://statulator.com/SampleSize/ss2PM.html.
Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43:W566–70.
Article
CAS
Google Scholar
Estaki M, Pither J, Baumeister P, Little JP, Gill SK, Ghosh S, et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016;4:42.
Article
Google Scholar
Keohane DM, Woods T, O’Connor P, Underwood S, Cronin O, Whiston R, et al. Four men in a boat: ultra-endurance exercise alters the gut microbiome. J Sci Med Sport. 2019;22:1059–64.
Article
Google Scholar
Petriz BA, Castro AP, Almeida JA, Gomes CP, Fernandes GR, Kruger RH, et al. Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics. 2014;15:511.
Article
Google Scholar
Barton W, Penney NC, Cronin O, Garcia-Perez I, Molloy MG, Holmes E, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut England. 2018;67:625–33.
CAS
Google Scholar
Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA, et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc. 2018;50:747–57.
Article
Google Scholar
Resende AS, Leite GSF, Lancha Junior AH. Changes in the gut bacteria composition of healthy men with the same nutritional profile undergoing 10-week aerobic exercise training: a randomized controlled trial. Nutrients. 2021;13:2839.
Article
CAS
Google Scholar
Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, et al. Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab United States. 2016;24:256–68.
Article
CAS
Google Scholar
Dearlove DJ, Harrison OK, Hodson L, Jefferson A, Clarke K, Cox PJ. The effect of blood ketone concentration and exercise intensity on exogenous ketone oxidation rates in athletes. Med Sci Sports Exerc. 2021;53:505–16.
Article
CAS
Google Scholar
O’Malley T, Myette-Cote E, Durrer C, Little JP. Nutritional ketone salts increase fat oxidation but impair high-intensity exercise performance in healthy adult males. Appl Physiol Nutr Metab Canada. 2017;42:1031–5.
Article
Google Scholar
Shaw DM, Merien F, Braakhuis A, Plews D, Laursen P, Dulson DK. The effect of 1,3-butanediol on cycling time-trial performance. Int J Sport Nutr Exerc Metab. 2019;29:466–73.
Article
CAS
Google Scholar
Evans M, Patchett E, Nally R, Kearns R, Larney M, Egan B. Effect of acute ingestion of β-hydroxybutyrate salts on the response to graded exercise in trained cyclists. Eur J Sport Sci England. 2018;18:376–86.
Article
Google Scholar
Poffé C, Wyns F, Ramaekers M, Hespel P. Exogenous ketosis impairs 30-min time-trial performance independent of bicarbonate supplementation. Med Sci Sports Exerc. 2021;53:1068–78.
Article
Google Scholar
Castro A, Duft RG, Ferreira MLV, de Andrade ALL, Gáspari AF, Silva LM, et al. Association of skeletal muscle and serum metabolites with maximum power output gains in response to continuous endurance or high-intensity interval training programs: the TIMES study—a randomized controlled trial. PLoS ONE. 2019;14: e0212115.
Article
CAS
Google Scholar
Pangallo D, Saková N, Koreňová J, Puškárová A, Kraková L, Valík L, et al. Microbial diversity and dynamics during the production of May bryndza cheese. Int J Food Microbiol. 2014;170:38–43.
Article
CAS
Google Scholar
Soltys K, Stuchlikova M, Hlavaty T, Gaalova B, Budis J, Gazdarica J, et al. Seasonal changes of circulating 25-hydroxyvitamin D correlate with the lower gut microbiome composition in inflammatory bowel disease patients. Sci Rep. 2020;10:6024.
Article
CAS
Google Scholar
Kanhere M, He J, Chassaing B, Ziegler TR, Alvarez JA, Ivie EA, et al. Bolus weekly vitamin D3 supplementation impacts gut and airway microbiota in adults with cystic fibrosis: a double-blind, randomized, placebo-controlled clinical trial. J Clin Endocrinol Metab. 2018;103:564–74.
Article
Google Scholar
Pludowski P, Holick MF, Grant WB, Konstantynowicz J, Mascarenhas MR, Haq A, et al. Vitamin D supplementation guidelines. J Steroid Biochem Mol Biol. 2018;175:125–35.
Article
CAS
Google Scholar
Archer E, Marlow ML, Lavie CJ. Controversy and debate: memory-based methods paper 1: the fatal flaws of food frequency questionnaires and other memory-based dietary assessment methods. J Clin Epidemiol. 2018;104:113–24.
Article
Google Scholar
Martín-Calvo N, Martínez-González MÁ. Controversy and debate: memory-based dietary assessment methods paper 2. J Clin Epidemiol. 2018;104:125–9.
Article
Google Scholar