Davies G, Riemann BL, Manske R. Current concepts of plyometric exercise. Int J Sports Phys Ther. 2015;10(6):760–86.
PubMed
PubMed Central
Google Scholar
Sammoud S, Negra Y, Chaabene H, Bouguezzi R, Moran J, Granacher U. The effects of plyometric jump training on jumping and swimming performances in prepubertal male swimmers. J Sports Sci Med. 2019;18(4):805–11.
PubMed
PubMed Central
Google Scholar
Oxfeldt M, Overgaard K, Hvid LG, Dalgas U. Effects of plyometric training on jumping, sprint performance, and lower body muscle strength in healthy adults: a systematic review and meta-analyses. Scand J Med Sci Sports. 2019;29(10):1453–65. https://doi.org/10.1111/sms.13487.
Article
PubMed
Google Scholar
Lum D, Tan F, Pang J, Barbosa TM. Effects of intermittent sprint and plyometric training on endurance running performance. J Sport Health Sci. 2019;8(5):471–7. https://doi.org/10.1016/j.jshs.2016.08.005.
Article
PubMed
Google Scholar
de Villarreal ES, Gonzalez-Badillo JJ, Izquierdo M. Low and moderate plyometric training frequency produces greater jumping and sprinting gains compared with high frequency. J Strength Cond Res. 2008;22(3):715–25. https://doi.org/10.1519/JSC.0b013e318163eade.
Article
PubMed
Google Scholar
van de Hoef PA, Brauers JJ, van Smeden M, Backx FJG, Brink MS. The effects of lower-extremity plyometric training on soccer-specific outcomes in adult male soccer players: a systematic review and meta-analysis. Int J Sports Physiol Perform. 2019. https://doi.org/10.1123/ijspp.2019-0565.
Article
PubMed
Google Scholar
Markovic G, Mikulic P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010;40(10):859–95. https://doi.org/10.2165/11318370-000000000-00000.
Article
PubMed
Google Scholar
Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc. 1988;20(5 Suppl):S135–45. https://doi.org/10.1249/00005768-198810001-00009.
Article
CAS
PubMed
Google Scholar
Ramirez-Campillo R, Burgos CH, Henriquez-Olguin C, Andrade DC, Martinez C, Alvarez C, et al. Effect of unilateral, bilateral, and combined plyometric training on explosive and endurance performance of young soccer players. J Strength Cond Res. 2015;29(5):1317–28. https://doi.org/10.1519/JSC.0000000000000762.
Article
PubMed
Google Scholar
Moran J, Ramirez-Campillo R, Granacher U. Effects of jumping exercise on muscular power in older adults: a meta-analysis. Sports Med. 2018;48(12):2843–57. https://doi.org/10.1007/s40279-018-1002-5.
Article
PubMed
Google Scholar
Chmielewski TL, Myer GD, Kauffman D, Tillman SM. Plyometric exercise in the rehabilitation of athletes: physiological responses and clinical application. J Orthop Sports Phys Ther. 2006;36(5):308–19. https://doi.org/10.2519/jospt.2006.2013.
Article
PubMed
Google Scholar
Bravo-Sanchez A, Abian P, Jimenez F, Abian-Vicen J. Myotendinous asymmetries derived from the prolonged practice of badminton in professional players. PLoS ONE. 2019;14(9):e0222190. https://doi.org/10.1371/journal.pone.0222190.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolsterlee B, Veeger HE, van der Helm FC, Gandevia SC, Herbert RD. Comparison of measurements of medial gastrocnemius architectural parameters from ultrasound and diffusion tensor images. J Biomech. 2015;48(6):1133–40. https://doi.org/10.1016/j.jbiomech.2015.01.012.
Article
PubMed
Google Scholar
Kawakami Y, Abe T, Fukunaga T. Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol (1985). 1993;74(6):2740–4. https://doi.org/10.1152/jappl.1993.74.6.2740.
Article
CAS
Google Scholar
Granacher U, Lesinski M, Busch D, Muehlbauer T, Prieske O, Puta C, et al. Effects of resistance training in youth athletes on muscular fitness and athletic performance: a conceptual model for long-term athlete development. Front Physiol. 2016;7:164. https://doi.org/10.3389/fphys.2016.00164.
Article
PubMed
PubMed Central
Google Scholar
Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 2 - training considerations for improving maximal power production. Sports Med. 2011;41(2):125–46. https://doi.org/10.2165/11538500-000000000-00000.
Article
PubMed
Google Scholar
Kannas TM, Kellis E, Amiridis IG. Incline plyometrics-induced improvement of jumping performance. Eur J Appl Physiol. 2012;112(6):2353–61. https://doi.org/10.1007/s00421-011-2208-5.
Article
PubMed
Google Scholar
Fouré A, Nordez A, McNair P, Cornu C. Effects of plyometric training on both active and passive parts of the plantarflexors series elastic component stiffness of muscle-tendon complex. Eur J Appl Physiol. 2011;111(3):539–48. https://doi.org/10.1007/s00421-010-1667-4.
Article
PubMed
Google Scholar
Grgic J, Schoenfeld BJ, Mikulic P. Effects of plyometric vs. resistance training on skeletal muscle hypertrophy: a review. J Sport Health Sci. 2020. https://doi.org/10.1016/j.jshs.2020.06.010.
Article
PubMed
PubMed Central
Google Scholar
Wang JH. Mechanobiology of tendon. J Biomech. 2006;39(9):1563–82. https://doi.org/10.1016/j.jbiomech.2005.05.011.
Article
PubMed
Google Scholar
Sarver DC, Kharaz YA, Sugg KB, Gumucio JP, Comerford E, Mendias CL. Sex differences in tendon structure and function. J Orthop Res. 2017;35(10):2117–26. https://doi.org/10.1002/jor.23516.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monte A, Zamparo P. Correlations between muscle-tendon parameters and acceleration ability in 20 m sprints. PLoS ONE. 2019;14(3): e0213347. https://doi.org/10.1371/journal.pone.0213347.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hess GW. Achilles tendon rupture: a review of etiology, population, anatomy, risk factors, and injury prevention. Foot Ankle Spec. 2010;3(1):29–32. https://doi.org/10.1177/1938640009355191.
Article
PubMed
Google Scholar
Kongsgaard M, Aagaard P, Kjaer M, Magnusson SP. Structural Achilles tendon properties in athletes subjected to different exercise modes and in Achilles tendon rupture patients. J Appl Physiol (1985). 2005;99(5):1965–71. https://doi.org/10.1152/japplphysiol.00384.2005.
Article
CAS
Google Scholar
Houghton LA, Dawson BT, Rubenson J. Effects of plyometric training on Achilles tendon properties and shuttle running during a simulated cricket batting innings. J Strength Cond Res. 2013;27(4):1036–46. https://doi.org/10.1519/JSC.0b013e3182651e7a.
Article
PubMed
Google Scholar
Paleckis V, Mickevičius M, Snieckus A, Streckis V, Pääsuke M, Rutkauskas S, et al. Changes in indirect markers of muscle damage and tendons after daily drop jumping exercise with rapid load increase. J Sports Sci Med. 2015;14(4):825–33.
PubMed
PubMed Central
Google Scholar
Laurent C, Baudry S, Duchateau J. Comparison of plyometric training with two different jumping techniques on achilles tendon properties and jump performances. J Strength Cond Res. 2020;34(6):1503–10. https://doi.org/10.1519/jsc.0000000000003604.
Article
PubMed
Google Scholar
Kubo K, Morimoto M, Komuro T, Yata H, Tsunoda N, Kanehisa H, et al. Effects of plyometric and weight training on muscle-tendon complex and jump performance. Med Sci Sports Exerc. 2007;39(10):1801–10. https://doi.org/10.1249/mss.0b013e31813e630a.
Article
PubMed
Google Scholar
Van der Worp H, de Poel HJ, Diercks RL, van den Akker-Scheek I, Zwerver J. Jumper’s knee or lander’s knee? A systematic review of the relation between jump biomechanics and patellar tendinopathy. Int J Sports Med. 2014;35(8):714–22. https://doi.org/10.1055/s-0033-1358674.
Article
PubMed
Google Scholar
Fredberg U, Bolvig L, Andersen NT. Prophylactic training in asymptomatic soccer players with ultrasonographic abnormalities in Achilles and patellar tendons: the Danish Super League Study. Am J Sports Med. 2008;36(3):451–60. https://doi.org/10.1177/0363546507310073.
Article
PubMed
Google Scholar
Gavronski G, Veraksits A, Vasar E, Maaroos J. Evaluation of viscoelastic parameters of the skeletal muscles in junior triathletes. Physiol Meas. 2007;28(6):625–37. https://doi.org/10.1088/0967-3334/28/6/002.
Article
PubMed
Google Scholar
Brughelli M, Cronin J. A review of research on the mechanical stiffness in running and jumping: methodology and implications. Scand J Med Sci Sports. 2008;18(4):417–26. https://doi.org/10.1111/j.1600-0838.2008.00769.x.
Article
CAS
PubMed
Google Scholar
van Soest AJ, Huijing PA, Solomonow M. The effect of tendon on muscle force in dynamic isometric contractions: a simulation study. J Biomech. 1995;28(7):801–7. https://doi.org/10.1016/0021-9290(94)00131-m.
Article
PubMed
Google Scholar
Norman RW, Komi PV. Electromechanical delay in skeletal muscle under normal movement conditions. Acta Physiol Scand. 1979;106(3):241–8. https://doi.org/10.1111/j.1748-1716.1979.tb06394.x.
Article
CAS
PubMed
Google Scholar
Spurrs RW, Murphy AJ, Watsford ML. The effect of plyometric training on distance running performance. Eur J Appl Physiol. 2003;89(1):1–7. https://doi.org/10.1007/s00421-002-0741-y.
Article
PubMed
Google Scholar
Fouré A, Nordez A, Guette M, Cornu C. Effects of plyometric training on passive stiffness of gastrocnemii and the musculo-articular complex of the ankle joint. Scand J Med Sci Sports. 2009;19(6):811–8. https://doi.org/10.1111/j.1600-0838.2008.00853.x.
Article
PubMed
Google Scholar
Burgess KE, Connick MJ, Graham-Smith P, Pearson SJ. Plyometric vs. isometric training influences on tendon properties and muscle output. J Strength Cond Res. 2007;21(3):986–9. https://doi.org/10.1519/R-20235.1.
Article
PubMed
Google Scholar
Fouré A, Nordez A, Cornu C. Plyometric training effects on Achilles tendon stiffness and dissipative properties. J Appl Physiol (1985). 2010;109(3):849–54. https://doi.org/10.1152/japplphysiol.01150.2009.
Article
Google Scholar
Wu YK, Lien YH, Lin KH, Shih TTF, Wang TG, Wang HK. Relationships between three potentiation effects of plyometric training and performance. Scand J Med Sci Sports. 2010;20(1):e80–6. https://doi.org/10.1111/j.1600-0838.2009.00908.x.
Article
PubMed
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Reprint–preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys Ther. 2009;89(9):873–80.
Article
Google Scholar
Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.
Article
PubMed
Google Scholar
Stojanovic E, Ristic V, McMaster DT, Milanovic Z. Effect of plyometric training on vertical jump performance in female athletes: a systematic review and meta-analysis. Sports Med. 2017;47(5):975–86. https://doi.org/10.1007/s40279-016-0634-6.
Article
PubMed
Google Scholar
McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods. 2021;12(1):55–61. https://doi.org/10.1002/jrsm.1411.
Article
PubMed
Google Scholar
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557.
Article
PubMed
PubMed Central
Google Scholar
Sole S, Ramirez-Campillo R, Andrade DC, Sanchez-Sanchez J. Plyometric jump training effects on the physical fitness of individual-sport athletes: a systematic review with meta-analysis. PeerJ. 2021;9: e11004. https://doi.org/10.7717/peerj.11004.
Article
PubMed
PubMed Central
Google Scholar
Khan KS. Systematic reviews to support evidence -based medicine: how to review and apply findings of healthcare research. 2nd ed. London: Hodder Arnold; 2011.
Book
Google Scholar
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.
Article
CAS
PubMed
Google Scholar
Cohen J. Statistical power analysis for the behavioural sciences. Hillside, New Jersey: Lawrence Erlbaum Associates; 1988.
Google Scholar
Blazevich AJ, Gill ND, Bronks R, Newton RU. Training-specific muscle architecture adaptation after 5-wk training in athletes. Med Sci Sports Exerc. 2003;35(12):2013–22. https://doi.org/10.1249/01.Mss.0000099092.83611.20.
Article
PubMed
Google Scholar
Coratella G, Beato M, Milanese C, Longo S, Limonta E, Rampichini S, et al. Specific adaptations in performance and muscle architecture after weighted jumpsquat vs. body mass squat jump training in recreational soccer players. J Strength Cond Res. 2018;32(4):921–9. https://doi.org/10.1519/JSC.0000000000002463.
Article
PubMed
Google Scholar
Franchi MV, Monti E, Carter A, Quinlan JI, Herrod PJJ, Reeves ND, et al. Bouncing back! Counteracting muscle aging with plyometric muscle loading. Front Physiol. 2019;10:178. https://doi.org/10.3389/fphys.2019.00178.
Article
PubMed
PubMed Central
Google Scholar
Helland C, Hole E, Iversen E, Olsson MC, Seynnes O, Solberg PA, et al. Training strategies to improve muscle power: is olympic-style weightlifting relevant? Med Sci Sports Exerc. 2017;49(4):736–45. https://doi.org/10.1249/MSS.0000000000001145.
Article
PubMed
Google Scholar
Horwath O, Paulsen G, Esping T, Seynnes O, Olsson MC. Isokinetic resistance training combined with eccentric overload improves athletic performance and induces muscle hypertrophy in young ice hockey players. J Sci Med Sport. 2019;22(7):821–6. https://doi.org/10.1016/j.jsams.2018.12.017.
Article
PubMed
Google Scholar
Kubo K, Ishigaki T, Ikebukuro T. Effects of plyometric and isometric training on muscle and tendon stiffness invivo. Physiol Rep. 2017;5(15):13.
Article
Google Scholar
Kudo S, Sato T, Miyashita T. Effect of plyometric training on the fascicle length of the gastrocnemius medialis muscle. J Phys Ther Sci. 2020;32(4):277–80. https://doi.org/10.1589/jpts.32.277.
Article
PubMed
PubMed Central
Google Scholar
Monti E, Franchi MV, Badiali F, Quinlan JI, Longo S, Narici MV. The time-course of changes in muscle mass, architecture and power during 6 weeks of plyometric training. Front Physiol. 2020;11:14. https://doi.org/10.3389/fphys.2020.00946.
Article
Google Scholar
Stien N, Strate M, Andersen V, Saeterbakken AH. Effects of overspeed or overload plyometric training on jump height and lifting velocity. Sports Med Int Open. 2020;4(2):E32–8. https://doi.org/10.1055/a-1116-0749.
Article
PubMed
PubMed Central
Google Scholar
Ullrich B, Pelzer T, Pfeiffer M. Neuromuscular effects to 6 weeks of loaded countermovement jumping with traditional and daily undulating periodization. J Strength Cond Res. 2018;32(3):660–74. https://doi.org/10.1519/jsc.0000000000002290.
Article
PubMed
Google Scholar
Fouré A, Nordez A, Cornu C. Effects of plyometric training on passive stiffness of gastrocnemii muscles and Achilles tendon. Eur J Appl Physiol. 2012;112(8):2849–57. https://doi.org/10.1007/s00421-011-2256-x.
Article
PubMed
Google Scholar
Correa CS, LaRoche DP, Cadore EL, Reischak-Oliveira A, Bottaro M, Kruel LF, et al. 3 Different types of strength training in older women. Int J Sports Med. 2012;33(12):962–9. https://doi.org/10.1055/s-0032-1312648.
Article
CAS
PubMed
Google Scholar
Kubo K, Ikebukuro T, Yata H. Effects of plyometric training on muscle-tendon mechanical properties and behavior of fascicles during jumping. Physiol Rep. 2021;9(21):e15073. https://doi.org/10.14814/phy2.15073.
Article
PubMed
PubMed Central
Google Scholar
Van der Zwaard S, Koppens TFP, Weide G, Levels K, Hofmijster MJ, de Koning JJ, et al. Training-induced muscle adaptations during competitive preparation in Elite female rowers. Front Sports Act Living. 2021;3:781942. https://doi.org/10.3389/fspor.2021.781942.
Article
PubMed
PubMed Central
Google Scholar
Hirayama K, Iwanuma S, Ikeda N, Yoshikawa A, Ema R, Kawakami Y. Plyometric training favors optimizing muscle-tendon behavior during depth jumping. Front Physiol. 2017;8:9. https://doi.org/10.3389/fphys.2017.00016.
Article
Google Scholar
Ogiso K, Miki S. Consecutive rebound jump training with electromyostimulation of the calf muscle efficiently improves jump performance. Transl Sports Med. 2020;3(5):454–63. https://doi.org/10.1002/tsm2.161.
Article
Google Scholar
Grosset JF, Piscione J, Lambertz D, Perot C. Paired changes in electromechanical delay and musculo-tendinous stiffness after endurance or plyometric training. Eur J Appl Physiol. 2009;105(1):131–9. https://doi.org/10.1007/s00421-008-0882-8.
Article
PubMed
Google Scholar
Horiuchi M, Endo J, Sato T, Okita K. Jump training with blood flow restriction has no effect on jump performance. Biol Sport. 2018;35(4):343–8. https://doi.org/10.5114/biolsport.2018.78053.
Article
PubMed
PubMed Central
Google Scholar
Hunter JP, Marshall RN. Effects of power and flexibility training on vertical jump technique. Med Sci Sports Exerc. 2002;34(3):478–86. https://doi.org/10.1097/00005768-200203000-00015.
Article
PubMed
Google Scholar
Kijowksi KN, Capps CR, Goodman CL, Erickson TM, Knorr DP, Triplett NT, et al. Short-term resistance and plyometric training improves eccentric phase kinetics in jumping. J Strength Cond Res. 2015;29(8):2186–96. https://doi.org/10.1519/jsc.0000000000000904.
Article
PubMed
Google Scholar
Potach DH, Katsavelis D, Karst GM, Latin RW, Stergiou N. The effects of a plyometric training program on the latency time of the quadriceps femoris and gastrocnemius short-latency responses. J Sports Med Phys Fit. 2009;49(1):35–43.
CAS
Google Scholar
Taube W, Leukel C, Lauber B, Gollhofer A. The drop height determines neuromuscular adaptations and changes in jump performance in stretch-shortening cycle training. Scand J Med Sci Sports. 2012;22(5):671–83. https://doi.org/10.1111/j.1600-0838.2011.01293.x.
Article
CAS
PubMed
Google Scholar
Zubac D, Simunic B. Skeletal muscle contraction time and tone decrease after 8 weeks of plyometric training. J Strength Cond Res. 2017;31(6):1610–9. https://doi.org/10.1519/jsc.0000000000001626.
Article
PubMed
Google Scholar
Duhig SJ, Bourne MN, Buhmann RL, Williams MD, Minett GM, Roberts LA, et al. Effect of concentric and eccentric hamstring training on sprint recovery, strength and muscle architecture in inexperienced athletes. J Sci Med Sport. 2019;22(7):769–74. https://doi.org/10.1016/j.jsams.2019.01.010.
Article
PubMed
Google Scholar
Trezise J, Blazevich AJ. Anatomical and Neuromuscular Determinants of Strength Change in Previously Untrained Men Following Heavy Strength Training. Front Physiol. 2019;10:1001. https://doi.org/10.3389/fphys.2019.01001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noorkoiv M, Nosaka K, Blazevich AJ. Neuromuscular adaptations associated with knee joint angle-specific force change. Med Sci Sports Exerc. 2014;46(8):1525–37. https://doi.org/10.1249/MSS.0000000000000269.
Article
PubMed
Google Scholar
Blazevich AJ, Cannavan D, Coleman DR, Horne S. Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol (1985). 2007;103(5):1565–75. https://doi.org/10.1152/japplphysiol.00578.2007.
Article
Google Scholar
Franchi MV, Atherton PJ, Reeves ND, Fluck M, Williams J, Mitchell WK, et al. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol (Oxf). 2014;210(3):642–54. https://doi.org/10.1111/apha.12225.
Article
CAS
Google Scholar
Timmins RG, Ruddy JD, Presland J, Maniar N, Shield AJ, Williams MD, et al. Architectural changes of the biceps femoris long head after concentric or eccentric training. Med Sci Sports Exerc. 2016;48(3):499–508. https://doi.org/10.1249/MSS.0000000000000795.
Article
PubMed
Google Scholar
Franchi MV, Reeves ND, Narici MV. Skeletal muscle remodeling in response to eccentric vs. concentric loading: morphological, molecular, and metabolic adaptations. Front Physiol. 2017;8:447. https://doi.org/10.3389/fphys.2017.00447.
Article
PubMed
PubMed Central
Google Scholar
Brockett CL, Morgan DL, Proske U. Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med Sci Sports Exerc. 2001;33(5):783–90. https://doi.org/10.1097/00005768-200105000-00017.
Article
CAS
PubMed
Google Scholar
Narici M, Franchi M, Maganaris C. Muscle structural assembly and functional consequences. J Exp Biol. 2016;219(Pt 2):276–84. https://doi.org/10.1242/jeb.128017.
Article
PubMed
Google Scholar
Franchi MV, Atherton PJ, Maganaris CN, Narici MV. Fascicle length does increase in response to longitudinal resistance training and in a contraction-mode specific manner. Springerplus. 2016;5:94. https://doi.org/10.1186/s40064-015-1548-8.
Article
PubMed
PubMed Central
Google Scholar
Walker S, Trezise J, Haff GG, Newton RU, Hakkinen K, Blazevich AJ. Increased fascicle length but not patellar tendon stiffness after accentuated eccentric-load strength training in already-trained men. Eur J Appl Physiol. 2020;120(11):2371–82. https://doi.org/10.1007/s00421-020-04462-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bosco C, Komi PV. Influence of aging on the mechanical behavior of leg extensor muscles. Eur J Appl Physiol Occup Physiol. 1980;45(2–3):209–19. https://doi.org/10.1007/BF00421329.
Article
CAS
PubMed
Google Scholar
Newton RU, Kraemer WJ, Hakkinen K. Effects of ballistic training on preseason preparation of elite volleyball players. Med Sci Sports Exerc. 1999;31(2):323–30. https://doi.org/10.1097/00005768-199902000-00017.
Article
CAS
PubMed
Google Scholar
Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med. 1996;24(6):765–73. https://doi.org/10.1177/036354659602400611.
Article
CAS
PubMed
Google Scholar
Fowler NE, Trzaskoma Z, Wit A, Iskra L, Lees A. The effectiveness of a pendulum swing for the development of leg strength and counter-movement jump performance. J Sports Sci. 1995;13(2):101–8. https://doi.org/10.1080/02640419508732217.
Article
CAS
PubMed
Google Scholar
Saez-Saez de Villarreal E, Requena B, Newton RU. Does plyometric training improve strength performance? A meta-analysis. J Sci Med Sport. 2010;13(5):513–22. https://doi.org/10.1016/j.jsams.2009.08.005.
Article
PubMed
Google Scholar
Blair SN, Connelly JC. How much physical activity should we do? The case for moderate amounts and intensities of physical activity. Res Q Exerc Sport. 1996;67(2):193–205. https://doi.org/10.1080/02701367.1996.10607943.
Article
CAS
PubMed
Google Scholar
Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol (1985). 2002;93(4):1318–26. https://doi.org/10.1152/japplphysiol.00283.2002.
Article
Google Scholar
Herrero JA, Izquierdo M, Maffiuletti NA, Garcia-Lopez J. Electromyostimulation and plyometric training effects on jumping and sprint time. Int J Sports Med. 2006;27(7):533–9. https://doi.org/10.1055/s-2005-865845.
Article
CAS
PubMed
Google Scholar
Martel GF, Harmer ML, Logan JM, Parker CB. Aquatic plyometric training increases vertical jump in female volleyball players. Med Sci Sports Exerc. 2005;37(10):1814–9. https://doi.org/10.1249/01.mss.0000184289.87574.60.
Article
PubMed
Google Scholar
Cormie P, McGuigan MR, Newton RU. Influence of strength on magnitude and mechanisms of adaptation to power training. Med Sci Sports Exerc. 2010;42(8):1566–81. https://doi.org/10.1249/MSS.0b013e3181cf818d.
Article
PubMed
Google Scholar
Cook JL, Purdam CR. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br J Sports Med. 2009;43(6):409–16. https://doi.org/10.1136/bjsm.2008.051193.
Article
CAS
PubMed
Google Scholar
Magnusson SP, Kjaer M. Region-specific differences in Achilles tendon cross-sectional area in runners and non-runners. Eur J Appl Physiol. 2003;90(5–6):549–53. https://doi.org/10.1007/s00421-003-0865-8.
Article
PubMed
Google Scholar
Mahieu NN, McNair P, Cools A, D’Haen C, Vandermeulen K, Witvrouw E. Effect of eccentric training on the plantar flexor muscle-tendon tissue properties. Med Sci Sports Exerc. 2008;40(1):117–23. https://doi.org/10.1249/mss.0b013e3181599254.
Article
PubMed
Google Scholar
Aura O, Komi PV. Effects of muscle fiber distribution on the mechanical efficiency of human locomotion. Int J Sports Med. 1987;8(Suppl 1):30–7. https://doi.org/10.1055/s-2008-1025701.
Article
PubMed
Google Scholar
Aura O, Komi PV. Effects of prestretch intensity on mechanical efficiency of positive work and on elastic behavior of skeletal muscle in stretch-shortening cycle exercise. Int J Sports Med. 1986;7(3):137–43. https://doi.org/10.1055/s-2008-1025751.
Article
CAS
PubMed
Google Scholar
Asmussen E, Bonde-Petersen F, Jorgensen K. Mechano-elastic properties of human muscles at different temperatures. Acta Physiol Scand. 1976;96(1):83–93. https://doi.org/10.1111/j.1748-1716.1976.tb10173.x.
Article
CAS
PubMed
Google Scholar
Komi PV. Training of muscle strength and power: interaction of neuromotoric, hypertrophic, and mechanical factors. Int J Sports Med. 1986;7(Suppl 1):10–5. https://doi.org/10.1055/s-2008-1025796.
Article
PubMed
Google Scholar
Alexander RM. Elastic energy stores in running vertebrates. Am Zool. 1984;24(1):85–94.
Article
Google Scholar
Kubo K, Kanehisa H, Ito M, Fukunaga T. Effects of isometric training on the elasticity of human tendon structures in vivo. J Appl Physiol (1985). 2001;91(1):26–32. https://doi.org/10.1152/jappl.2001.91.1.26.
Article
CAS
Google Scholar
Arampatzis A, Karamanidis K, Albracht K. Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude. J Exp Biol. 2007;210(Pt 15):2743–53. https://doi.org/10.1242/jeb.003814.
Article
PubMed
Google Scholar
Kongsgaard M, Reitelseder S, Pedersen TG, Holm L, Aagaard P, Kjaer M, et al. Region specific patellar tendon hypertrophy in humans following resistance training. Acta Physiol (Oxf). 2007;191(2):111–21. https://doi.org/10.1111/j.1748-1716.2007.01714.x.
Article
CAS
Google Scholar
Brown ME, Mayhew JL, Boleach LW. Effect of plyometric training on vertical jump performance in high school basketball players. J Sports Med Phys Fitness. 1986;26(1):1–4.
CAS
PubMed
Google Scholar
Brazier J, Maloney S, Bishop C, Read PJ, Turner AN. Lower extremity stiffness: considerations for testing, performance enhancement, and injury risk. J Strength Cond Res. 2019;33(4):1156–66. https://doi.org/10.1519/JSC.0000000000002283.
Article
PubMed
Google Scholar
Ikezoe T, Asakawa Y, Fukumoto Y, Tsukagoshi R, Ichihashi N. Associations of muscle stiffness and thickness with muscle strength and muscle power in elderly women. Geriatr Gerontol Int. 2012;12(1):86–92. https://doi.org/10.1111/j.1447-0594.2011.00735.x.
Article
PubMed
Google Scholar
Bobbert MF, Mackay M, Schinkelshoek D, Huijing PA, van Ingen Schenau GJ. Biomechanical analysis of drop and countermovement jumps. Eur J Appl Physiol Occup Physiol. 1986;54(6):566–73. https://doi.org/10.1007/BF00943342.
Article
CAS
PubMed
Google Scholar
Markovic G. Does plyometric training improve vertical jump height? A meta-analytical review. Br J Sports Med. 2007;41(6):349–55; discussion 55. https://doi.org/10.1136/bjsm.2007.035113.
Walsh M, Arampatzis A, Schade F, Bruggemann GP. The effect of drop jump starting height and contact time on power, work performed, and moment of force. J Strength Cond Res. 2004;18(3):561–6. https://doi.org/10.1519/1533-4287(2004)18%3c561:TEODJS%3e2.0.CO;2.
Article
PubMed
Google Scholar
de Villarreal ES, Kellis E, Kraemer WJ, Izquierdo M. Determining variables of plyometric training for improving vertical jump height performance: a meta-analysis. J Strength Cond Res. 2009;23(2):495–506. https://doi.org/10.1519/JSC.0b013e318196b7c6.
Article
PubMed
Google Scholar
Radnor JM, Lloyd RS, Oliver JL. Individual response to different forms of resistance training in school-aged boys. J Strength Cond Res. 2017;31(3):787–97. https://doi.org/10.1519/JSC.0000000000001527.
Article
PubMed
Google Scholar
Bishop DJ, Girard O. Determinants of team-sport performance: implications for altitude training by team-sport athletes. Br J Sports Med. 2013;47(Suppl 1):i17-21. https://doi.org/10.1136/bjsports-2013-092950.
Article
PubMed
Google Scholar
Saez de Villarreal E, Requena B, Cronin JB. The effects of plyometric training on sprint performance: a meta-analysis. J Strength Cond Res. 2012;26(2):575–84. https://doi.org/10.1519/JSC.0b013e318220fd03.
Article
PubMed
Google Scholar
Wilson GJ, Newton RU, Murphy AJ, Humphries BJ. The optimal training load for the development of dynamic athletic performance. Med Sci Sports Exerc. 1993;25(11):1279–86.
Article
CAS
PubMed
Google Scholar
Witzke KA, Snow CM. Effects of plyometric jump training on bone mass in adolescent girls. Med Sci Sports Exerc. 2000;32(6):1051–7. https://doi.org/10.1097/00005768-200006000-00003.
Article
CAS
PubMed
Google Scholar
Behm DG, Young JD, Whitten JHD, Reid JC, Quigley PJ, Low J, et al. Effectiveness of traditional strength vs. power training on muscle strength, power and speed with youth: a systematic review and meta-analysis. Front Physiol. 2017;8:423. https://doi.org/10.3389/fphys.2017.00423.
Article
PubMed
PubMed Central
Google Scholar
Moran JJ, Sandercock GR, Ramirez-Campillo R, Meylan CM, Collison JA, Parry DA. Age-related variation in male youth athletes’ countermovement jump after plyometric training: a meta-analysis of controlled trials. J Strength Cond Res. 2017;31(2):552–65. https://doi.org/10.1519/JSC.0000000000001444.
Article
PubMed
Google Scholar
Peitz M, Behringer M, Granacher U. A systematic review on the effects of resistance and plyometric training on physical fitness in youth- What do comparative studies tell us? PLoS ONE. 2018;13(10): e0205525. https://doi.org/10.1371/journal.pone.0205525.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ford HT Jr, Puckett JR, Drummond JP, Sawyer K, Gantt K, Fussell C. Effects of three combinations of plyometric and weight training programs on selected physical fitness test items. Percept Mot Skills. 1983;56(3):919–22. https://doi.org/10.2466/pms.1983.56.3.919.
Article
PubMed
Google Scholar
Saez de Villarreal E, Requena B, Izquierdo M, Gonzalez-Badillo JJ. Enhancing sprint and strength performance: combined versus maximal power, traditional heavy-resistance and plyometric training. J Sci Med Sport. 2013;16(2):146–50. https://doi.org/10.1016/j.jsams.2012.05.007.
Article
PubMed
Google Scholar
Hoffrén-Mikkola M, Ishikawa M, Rantalainen T, Avela J, Komi PV. Neuromuscular mechanics and hopping training in elderly. Eur J Appl Physiol. 2015;115(5):863–77. https://doi.org/10.1007/s00421-014-3065-9.
Article
PubMed
Google Scholar