International Diabetes Federation. IDF Diabetes Atlas Ninth Edition 2019. 2019; Available from: www.diabetesatlas.org
Reid KF, Doros G, Clark DJ, Patten C, Carabello RJ, Cloutier GJ, et al. Muscle power failure in mobility-limited older adults: preserved single fiber function despite lower whole muscle size, quality and rate of neuromuscular activation. Eur J Appl Physiol. 2012;112:2289–301.
Article
PubMed
Google Scholar
Volpato S, Bianchi L, Lauretani F, Lauretani F, Bandinelli S, Guralnik JM, et al. Role of muscle mass and muscle quality in the association between diabetes and gait speed. Diabetes Care. 2012;35:1672–9.
Article
PubMed
PubMed Central
Google Scholar
Leenders M, Verdijk LB, van der Hoeven L, Adam JJ, van Kranenburg J, Nilwik R, et al. Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J Am Med Dir Assoc. 2013;14:585–92.
Article
PubMed
Google Scholar
Park SW, Goodpaster BH, Strotmeyer ES, Kuller LH, Broudeau R, Kammerer C, et al. Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes Care. 2007;30:1507–12.
Article
PubMed
Google Scholar
Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, de Rekeneire N, et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care. 2009;32:1993–7.
Article
PubMed
PubMed Central
Google Scholar
Aguayo GA, Hulman A, Vaillant MT, Donneau A-F, Schritz A, Stranges S, et al. Prospective association among diabetes diagnosis, HbA1c, glycemia, and frailty trajectories in an elderly population. Diabetes Care. 2019;42:1903–11.
Article
CAS
PubMed
Google Scholar
Wong E, Backholer K, Gearon E, Harding J, Freak-Poli R, Stevenson C, et al. Diabetes and risk of physical disability in adults: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2013;1:106–14.
Article
PubMed
Google Scholar
Guralnik JM, Branch LG, Cummings SR, Curb JD. Physical performance measures in aging research. J Gerontol. 1989;44:M141–6.
Article
CAS
PubMed
Google Scholar
Kalyani RR, Tra Y, Yeh H-C, Egan JM, Ferrucci L, Brancati FL. Quadriceps strength, quadriceps power, and gait speed in older U.S. adults with diabetes mellitus: results from the National Health and Nutrition Examination Survey, 1999–2002. J Am Geriatr Soc. 2013;61:769–75.
Sacchetti M, Balducci S, Bazzucchi I, Carlucci F, Scotto di Palumbo A, Haxhi J, et al. Neuromuscular dysfunction in diabetes: role of nerve impairment and training status. Med Sci Sports Exerc. 2013;45:52–9.
Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, et al. Gait speed and survival in older adults. JAMA. 2011;305:50–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guralnik JM, Simonsick EM, Ferrucci L. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home. Journal of [Internet]. academic.oup.com; 1994; Available from: https://academic.oup.com/geronj/article-abstract/49/2/M85/595537.
Bergland A, Jørgensen L, Emaus N, Strand BH. Mobility as a predictor of all-cause mortality in older men and women: 11.8 year follow-up in the Tromsø study. BMC Health Serv Res. 2017;17:22.
Li R, Xia J, Zhang XI, Gathirua-Mwangi WG, Guo J, Li Y, et al. Associations of muscle mass and strength with all-cause mortality among US older adults. Med Sci Sports Exerc. 2018;50:458–67.
Article
PubMed
PubMed Central
Google Scholar
Wei M, Gibbons LW, Kampert JB, Nichaman MZ, Blair SN. Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Ann Intern Med. 2000;132:605–11.
Article
CAS
PubMed
Google Scholar
Wray LA, Ofstedal MB, Langa KM, Blaum CS. The effect of diabetes on disability in middle-aged and older adults. J Gerontol A Biol Sci Med Sci. 2005;60:1206–11.
Article
PubMed
Google Scholar
Chiu C-J, Wray LA, Ofstedal MB. Diabetes-related change in physical disability from midlife to older adulthood: evidence from 1996–2003 Survey of Health and Living Status of the Elderly in Taiwan. Diabetes Res Clin Pract. 2011;91:413–23.
Article
PubMed
Google Scholar
Kyrou I, Tsigos C, Mavrogianni C, Cardon G, Van Stappen V, Latomme J, et al. Sociodemographic and lifestyle-related risk factors for identifying vulnerable groups for type 2 diabetes: a narrative review with emphasis on data from Europe. BMC Endocr Disord. 2020;20:134.
Article
PubMed
PubMed Central
Google Scholar
Alvarado BE, Zunzunegui M-V, Béland F, Bamvita J-M. Life course social and health conditions linked to frailty in Latin American older men and women. J Gerontol A Biol Sci Med Sci. 2008;63:1399–406.
Article
PubMed
Google Scholar
Makizako H, Shimada H, Doi T, Tsutsumimoto K, Hotta R, Nakakubo S, et al. Social frailty leads to the development of physical frailty among physically non-frail adults: a four-year follow-up longitudinal cohort study. Int J Environ Res Public Health. 2018;15. https://doi.org/10.3390/ijerph15030490.
Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39:2065–79.
Article
PubMed
PubMed Central
Google Scholar
Gregg EW, Lin J, Bardenheier B, Chen H, Rejeski WJ, Zhuo X, et al. Impact of intensive lifestyle intervention on disability-free life expectancy: the Look AHEAD Study. Diabetes Care. 2018;41:1040–8.
Article
PubMed
PubMed Central
Google Scholar
Balducci S, Zanuso S, Cardelli P, Salvi L, Mazzitelli G, Bazuro A, et al. Changes in physical fitness predict improvements in modifiable cardiovascular risk factors independently of body weight loss in subjects with type 2 diabetes participating in the Italian Diabetes and Exercise Study (IDES). Diabetes Care. 2012;35:1347–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Houston DK, Leng X, Bray GA, Hergenroeder AL, Hill JO, Jakicic JM, et al. A long-term intensive lifestyle intervention and physical function: the look AHEAD Movement and Memory Study. Obesity. 2015;23:77–84.
Article
PubMed
Google Scholar
Jakicic JM, Jaramillo SA, Balasubramanyam A, Bancroft B, Curtis JM, Mathews A, et al. Effect of a lifestyle intervention on change in cardiorespiratory fitness in adults with type 2 diabetes: results from the Look AHEAD Study. Int J Obes. 2009;33:305–16.
Article
CAS
Google Scholar
Brandon LJ, Gaasch DA, Boyette LW, Lloyd AM. Effects of long-term resistive training on mobility and strength in older adults with diabetes. J Gerontol A Biol Sci Med Sci. 2003;58:740–5.
Article
PubMed
Google Scholar
Botton CE, Umpierre D, Rech A, Pfeifer LO, Machado CLF, Teodoro JL, et al. Effects of resistance training on neuromuscular parameters in elderly with type 2 diabetes mellitus: A randomized clinical trial. Exp Gerontol. 2018;113:141–9.
Article
PubMed
Google Scholar
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.
Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions. John Wiley & Sons; 2019.
Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.
PubMed
PubMed Central
Google Scholar
Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998;52:377–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huffer D, Hing W, Newton R, Clair M. Strength training for plantar fasciitis and the intrinsic foot musculature: a systematic review. Phys Ther Sport. 2017;24:44–52.
Article
PubMed
Google Scholar
Spineli LM, Pandis N. Prediction interval in random-effects meta-analysis. Am J Orthod Dentofacial Orthop. 2020;157:586–8.
Article
PubMed
Google Scholar
Pfeifer LO, De Nardi AT, da Silva LXN, Nascimento DM do, Botton CE, Teodoro JL, et al. Association between physical activity interventions and functional capacity in middle-aged adults and older individuals with type 2 diabetes: a protocol for a systematic review and meta-analysis of randomized or non-randomized clinical trials [Internet]. 2020. https://osf.io/kpg2m.
Shabkhiz F, Khalafi M, Rosenkranz S, Karimi P, Moghadami K. Resistance training attenuates circulating FGF-21 and myostatin and improves insulin resistance in elderly men with and without type 2 diabetes mellitus: a randomised controlled clinical trial. EJSS . Informa UK Limited; 2020;1–10.
Yamamoto Y, Nagai Y, Kawanabe S, Hishida Y, Hiraki K, Sone M, et al. Effects of resistance training using elastic bands on muscle strength with or without a leucine supplement for 48 weeks in elderly patients with type 2 diabetes. Endocr J. 2021;68:291–8.
Article
CAS
PubMed
Google Scholar
Conners RT, Caputo JL, Coons JM, Fuller DK, Morgan DW. Impact of underwater treadmill training on glycemic control, blood lipids, and health-related fitness in adults with type 2 diabetes. Clin Diabetes. 2019;37:36–43.
Article
PubMed
PubMed Central
Google Scholar
Hwang C-L, Lim J, Yoo J-K, Kim H-K, Hwang M-H, Handberg EM, et al. Effect of all-extremity high-intensity interval training vs. moderate-intensity continuous training on aerobic fitness in middle-aged and older adults with type 2 diabetes: a randomized controlled trial. Exp Gerontol. 2019;116:46–53.
Szilágyi B, Kukla A, Makai A, Ács P, Járomi M. Sports therapy and recreation exercise program in type 2 diabetes: randomized controlled trial, 3-month follow-up. J Sports Med Phys Fitness. 2019;59:676–85.
Article
PubMed
Google Scholar
Melo KCB, Araújo F de S, Cordeiro Júnior CCM, de Andrade KTP, Moreira SR. Pilates method training: functional and blood glucose responses of older women with type 2 diabetes. J Strength Cond Res. 2020;34:1001–7.
del Pozo-Cruz B, Alfonso-Rosa RM, del Pozo-Cruz J, Sañudo B, Rogers ME. Effects of a 12-wk whole-body vibration based intervention to improve type 2 diabetes. Maturitas. 2014;77:52–8.
Article
PubMed
Google Scholar
Tan S, Li W, Wang J. Effects of six months of combined aerobic and resistance training for elderly patients with a long history of type 2 diabetes. J Sports Sci Med. 2012;11:495–501.
PubMed
PubMed Central
Google Scholar
Balducci S, Zanuso S, Nicolucci A, Fernando F, Cavallo S, Cardelli P, et al. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutr Metab Cardiovasc Dis. 2010;20:608–17.
Article
CAS
PubMed
Google Scholar
Lam P, Dennis SM, Diamond TH, Zwar N. Improving glycaemic and BP control in type 2 diabetes. The effectiveness of tai chi. Aust Fam Physician. 2008;37:884–7.
Bjørgaas M, Vik JT, Saeterhaug A, Langlo L, Sakshaug T, Mohus RM, et al. Relationship between pedometer-registered activity, aerobic capacity and self-reported activity and fitness in patients with type 2 diabetes. Diabetes Obes Metab Wiley. 2005;7:737–44.
Article
Google Scholar
Jiang Y, Tan S, Wang Z, Guo Z, Li Q, Wang J. Aerobic exercise training at maximal fat oxidation intensity improves body composition, glycemic control, and physical capacity in older people with type 2 diabetes. J Exerc Sci Fit. 2020;18:7–13.
Article
PubMed
Google Scholar
Labrunée M, Antoine D, Vergès B, Robin I, Casillas J-M, Gremeaux V. Effects of a home-based rehabilitation program in obese type 2 diabetics. Ann Phys Rehabil Med. 2012;55:415–29.
Article
PubMed
Google Scholar
Brun J-F, Bordenave S, Mercier J, Jaussent A, Picot M-C, Préfaut C. Cost-sparing effect of twice-weekly targeted endurance training in type 2 diabetics: a one-year controlled randomized trial. Diabetes Metab. 2008;34:258–65.
Article
CAS
PubMed
Google Scholar
Larose J, Sigal RJ, Boulé NG, Wells GA, Prud’homme D, Fortier MS, et al. Effect of exercise training on physical fitness in type II diabetes mellitus [Internet]. Med Sci Sports Exer. 2010. p. 1439–47. https://doi.org/10.1249/mss.0b013e3181d322dd
Loimaala A, Huikuri HV, Kööbi T, Rinne M, Nenonen A, Vuori I. Exercise training improves baroreflex sensitivity in type 2 diabetes. Diabetes. 2003;52:1837–42.
Article
CAS
PubMed
Google Scholar
Karstoft K, Winding K, Knudsen SH, Nielsen JS, Thomsen C, Pedersen BK, et al. The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial. Diabetes Care. 2013;36:228–36.
Article
PubMed
PubMed Central
Google Scholar
Kadoglou NPE, Iliadis F, Angelopoulou N, Perrea D, Ampatzidis G, Liapis CD, et al. The anti-inflammatory effects of exercise training in patients with type 2 diabetes mellitus. Eur J Cardiovasc Prev Rehabil. 2007;14:837–43.
Article
PubMed
Google Scholar
Kadoglou NPE, Iliadis F, Sailer N, Athanasiadou Z, Vitta I, Kapelouzou A, et al. Exercise training ameliorates the effects of rosiglitazone on traditional and novel cardiovascular risk factors in patients with type 2 diabetes mellitus. Metabolism. 2010;59:599–607.
Article
CAS
PubMed
Google Scholar
Loimaala A, Groundstroem K, Rinne M, Nenonen A, Huhtala H, Parkkari J, et al. Effect of long-term endurance and strength training on metabolic control and arterial elasticity in patients with type 2 diabetes mellitus. Am J Cardiol. 2009;103:972–7.
Article
PubMed
Google Scholar
Verity LS, Ismail AH. Effects of exercise on cardiovascular disease risk in women with NIDDM. Diabetes Res Clin Pract. 1989;6:27–35.
Article
CAS
PubMed
Google Scholar
Plotnikoff RC, Eves N, Jung M, Sigal RJ, Padwal R, Karunamuni N. Multicomponent, home-based resistance training for obese adults with type 2 diabetes: a randomized controlled trial. Int J Obes. 2010;34:1733–41.
Article
CAS
Google Scholar
Yan H, Prista A, Ranadive SM, Damasceno A, Caupers P, Kanaley JA, et al. Effect of aerobic training on glucose control and blood pressure in T2DDM East African males. ISRN Endocrinol. 2014;2014:864897.
Banitalebi E, Kazemi A, Faramarzi M, Nasiri S, Haghighi MM. Effects of sprint interval or combined aerobic and resistance training on myokines in overweight women with type 2 diabetes: A randomized controlled trial. Life Sci. 2019;217:101–9.
Article
CAS
PubMed
Google Scholar
Wilson GA, Wilkins GT, Cotter JD, Lamberts RR, Lal S, Baldi JC. HIIT improves left ventricular exercise response in adults with type 2 diabetes. Med Sci Sports Exerc. 2019;51:1099–105.
Article
PubMed
Google Scholar
Scheer AS, Naylor LH, Gan SK, Charlesworth J, Benjanuvatra N, Green DJ, et al. The effects of water-based exercise training in people with type 2 diabetes. Med Sci Sports Exerc. 2020;52:417–24.
Article
PubMed
Google Scholar
dos Santos GM, Montrezol FT, Pauli LSS, Sartori-Cintra AR, Colantonio E, Gomes RJ, et al. Undulatory physical resistance training program increases maximal strength in elderly type 2 diabetics. Einstein. 2014;12:425–32.
Article
PubMed
PubMed Central
Google Scholar
Fritz T, Wändell P, Åberg H, Engfeldt P. Walking for exercise—Does three times per week influence risk factors in type 2 diabetes? Diabetes Res Clin Pract. 2006;71:21–7.
Article
PubMed
Google Scholar
Skarfors ET, Wegener TA, Lithell H, Selinus I. Physical training as treatment for type 2 (non-insulin-dependent) diabetes in elderly men. A feasibility study over 2 years. Diabetologia. 1987;30:930–3.
Magalhães JP, Júdice PB, Ribeiro R, Andrade R, Raposo J, Dores H, et al. Effectiveness of high-intensity interval training combined with resistance training versus continuous moderate-intensity training combined with resistance training in patients with type 2 diabetes: A one-year randomized controlled trial. Diabetes Obes Metab. 2019;21:550–9.
Article
PubMed
Google Scholar
Stubbs EB Jr, Fisher MA, Miller CM, Jelinek C, Butler J, McBurney C, et al. Randomized controlled trial of physical exercise in diabetic veterans with length-dependent distal symmetric polyneuropathy. Front Neurosci. 2019;13:51.
Article
PubMed
PubMed Central
Google Scholar
Pozo-Cruz J del, del Pozo-Cruz J, Alfonso-Rosa RM, Ugia JL, McVeigh JG, del Pozo-Cruz B, et al. A primary care–based randomized controlled trial of 12-week whole-body vibration for balance improvement in type 2 diabetes mellitus. Arch Phys Med Rehabil. 2013. p. 2112–8. https://doi.org/10.1016/j.apmr.2013.05.030.
Otten J, Stomby A, Waling M, Isaksson A, Tellström A, Lundin-Olsson L, et al. Benefits of a Paleolithic diet with and without supervised exercise on fat mass, insulin sensitivity, and glycemic control: a randomized controlled trial in individuals with type 2 diabetes. Diabetes Metab Res Rev. 2017;33. https://doi.org/10.1002/dmrr.2828
Boulé NG, Kenny GP, Haddad E, Wells GA, Sigal RJ. Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in Type 2 diabetes mellitus. Diabetologia. 2003;46:1071–81.
Article
PubMed
Google Scholar
Yang Z, Scott CA, Mao C, Tang J, Farmer AJ. Resistance exercise versus aerobic exercise for type 2 diabetes: a systematic review and meta-analysis. Sports Med. 2014;44:487–99.
Article
PubMed
Google Scholar
Blair SN. Changes in physical fitness and all-cause mortality. JAMA. 1995. p. 1093. https://doi.org/10.1001/jama.1995.03520380029031.
Kuziemski K, Słomiński W, Jassem E. Impact of diabetes mellitus on functional exercise capacity and pulmonary functions in patients with diabetes and healthy persons. BMC Endocr Disord. 2019;19:2.
Article
PubMed
PubMed Central
Google Scholar
Lee MC. Validity of the 6-minute walk test and step test for evaluation of cardio respiratory fitness in patients with type 2 diabetes mellitus. J Exerc Nutr Biochem. 2018;22:49–55.
Article
Google Scholar
Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci. 2006;61:72–7.
Article
PubMed
Google Scholar
Izquierdo M, Merchant RA, Morley JE, Anker SD, Aprahamian I, Arai H, et al. International exercise recommendations in older adults (ICFSR): expert consensus guidelines. J Nutr Health Aging. 2021. https://doi.org/10.1007/s12603-021-1665-8.
Abellan van Kan G, Rolland Y, Andrieu S, Bauer J, Beauchet O, Bonnefoy M, et al. Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. J Nutr Health Aging. 2009;13:881–9.
Cesari M, Kritchevsky SB, Newman AB, Simonsick EM, Harris TB, Penninx BW, et al. Added value of physical performance measures in predicting adverse health-related events: results from the Health, Aging And Body Composition Study. J Am Geriatr Soc. 2009;57:251–9.
Article
PubMed
PubMed Central
Google Scholar
Studenski S, Perera S, Wallace D, Chandler JM, Duncan PW, Rooney E, et al. Physical performance measures in the clinical setting. J Am Geriatr Soc. 2003;51:314–22.
Article
PubMed
Google Scholar
Onodera CMK, Coelho-Júnior HJ, Sampaio RAC, Santos Duarte Lana JF, Teixeira LFM, Uchida MC, et al. The importance of objectively measuring functional tests in complement to self-report assessments in patients with knee osteoarthritis. Gait Posture. 2020;82:33–7.
Harman NL, Wilding JPH, Curry D, Harris J, Logue J, Pemberton RJ, et al. Selecting Core Outcomes for Randomised Effectiveness trials In Type 2 diabetes (SCORE-IT): a patient and healthcare professional consensus on a core outcome set for type 2 diabetes. BMJ Open Diabetes Res Care. 2019;7:e000700.