Wilke J, Schleip R, Yucesoy CA, Banzer W. Not merely a protective packing organ? A review of fascia and its force transmission capacity. J Appl Physiol. 2018;124(1):234–44.
Article
CAS
Google Scholar
Yucesoy CA, Baan GC, Koopman BH, Grootenboer HJ, Huijing PA. Pre-strained epimuscular connections cause muscular myofascial force transmission to affect properties of synergistic EHL and EDL muscles of the rat. J Biomech Eng. 2005;127(5):819–28.
Article
Google Scholar
Krause F, Wilke J, Vogt L, Banzer W. Intermuscular force transmission along myofascial chains: a systematic review. J Anat. 2016;228(6):910–8.
Article
Google Scholar
Huijing PA, Baan GC. Myofascial force transmission via extramuscular pathways occurs between antagonistic muscles. Cells Tissues Organs. 2008;188(4):400–14.
Article
Google Scholar
Hijikata T, Ishikawa H. Functional morphology of serially linked skeletal muscle fibers. Acta Anat (Basel). 1997;159(2–3):99–107.
Article
CAS
Google Scholar
Purslow PP, Trotter JA. The morphology and mechanical properties of endomysium in series-fibred muscles: variations with muscle length. J Muscle Res Cell Motil. 1994;15(3):299–308.
Article
CAS
Google Scholar
Passerieux E, Rossignol R, Letellier T, Delage JP. Physical continuity of the perimysium from myofibers to tendons: involvement in lateral force transmission in skeletal muscle. J Struct Biol. 2007;159(1):19–28.
Article
CAS
Google Scholar
Stecco A, Masiero S, Macchi V, Stecco C, Porzionato A, De Caro R. The pectoral fascia: anatomical and histological study. J Bodyw Mov Ther. 2009;13(3):255–61.
Article
Google Scholar
Stecco C, Macchi V, Porzionato A, Duparc F, De Caro R. The fascia: the forgotten structure. Ital J Anat Embryol = Arch Ital di Anat ed Embriol. 2011;116(3):127–38.
Google Scholar
Stecco C, Gagey O, Macchi V, Porzionato A, De Caro R, Aldegheri R, et al. Tendinous muscular insertions onto the deep fascia of the upper limb. First part: anatomical study. Morphologie. 2007;91(292):29–37.
Article
CAS
Google Scholar
Schleip R, Gabbiani G, Wilke J, Naylor I, Hinz B, Zorn A, et al. Fascia is able to actively contract and may thereby influence musculoskeletal dynamics: a histochemical and mechanographic investigation. Front Physiol. 2019;10:336.
Article
Google Scholar
Wilke J, Debelle H, Tenberg S, Dilley A, Maganaris C. Ankle motion is associated with soft tissue displacement in the dorsal thigh: an in vivo investigation suggesting myofascial force transmission across the knee joint. Front Physiol. 2020;11:180.
Article
Google Scholar
Wilke J, Hespanhol L, Behrens M. Is it all about the fascia? A systematic review and meta-analysis of the prevalence of extramuscular connective tissue lesions in muscle strain injury. Orthop J Sport Med. 2019;7(12):2325967119888500.
Article
Google Scholar
Stecco C, Gagey O, Belloni A, Pozzuoli A, Porzionato A, Macchi V, et al. Anatomy of the deep fascia of the upper limb. Second part: study of innervation. Morphologie. 2007;91(292):38–43. https://doi.org/10.1016/j.morpho.2007.05.002.
Article
CAS
PubMed
Google Scholar
Mense S. Innervation of the thoracolumbar fascia. Eur J Transl Myol. 2020;29(3):151–8. https://doi.org/10.4081/ejtm.2019.8297.
Article
Google Scholar
Langevin HM, Fox JR, Koptiuch C, Badger GJ, Greenan-Naumann AC, Bouffard NA, et al. Reduced thoracolumbar fascia shear strain in human chronic low back pain. BMC Musculoskelet Disord. 2011;12(1):203. https://doi.org/10.1186/1471-2474-12-203.
Article
PubMed
PubMed Central
Google Scholar
Gibson W, Arendt-Nielsen L, Mizumura TTK, Graven-Nielsen T. Increased pain from muscle fascia following eccentric exercise: animal and human findings. Exp Brain Res. 2009;194(2):299–308. https://doi.org/10.1186/1471-2474-12-203.
Article
PubMed
Google Scholar
Lau WY, Blazevich AJ, Newton MJ, Wu SSX, Nosaka K. Changes in electrical pain threshold of fascia and muscle after initial and secondary bouts of elbow flexor eccentric exercise. Eur J Appl Physiol. 2015;115(5):959–68.
Article
Google Scholar
Klingler W, Jäger H, Pedro MT, Schleip R. Faszien als Ursache von Schmerzsyndromen. In: Herbert M, Meißner W, editors. Aktuelle Schmerzmedizin. Ecomed Medizin. Heidelberg: Verlagsgruppe HÜThig Jehle Rehm Gmbh; 2014.
Google Scholar
Schilder A, Hoheisel U, Magerl W, Benrath J, Klein T, Treede R-D. Sensory findings after stimulation of the thoracolumbar fascia with hypertonic saline suggest its contribution to low back pain. Pain. 2014;155(2):222–31.
Article
Google Scholar
Stecco C, Stern R, Porzionato A, Macchi V, Masiero S, Stecco A, et al. Hyaluronan within fascia in the etiology of myofascial pain. Surg Radiol Anat. 2011;33(10):891–6.
Article
Google Scholar
Nosaka K, Newton M, Sacco P. Delayed-onset muscle soreness does not reflect the magnitude of eccentric exercise-induced muscle damage. Scand J Med Sci Sport. 2002;12(6):337–46. https://doi.org/10.1034/j.1600-0838.2002.10178.x.
Article
Google Scholar
Nurenberg P, Giddings CJ, Stray-Gundersen J, Fleckenstein JL, Gonyea WJ, Peshock RM. MR imaging-guided muscle biopsy for correlation of increased signal intensity with ultrastructural change and delayed-onset muscle soreness after exercise. Radiology. 1992;184(3):865–9. https://doi.org/10.1148/radiology.184.3.1509081.
Article
CAS
PubMed
Google Scholar
Hotfiel T, Freiwald J, Hoppe MW, Lutter C, Forst R, Grim C, Bloch W, Hüttel M, Hiess R. Advances in delayed-onset muscle soreness (DOMS): part I: pathogenesis and diagnostics. Sportverletz Sportschaden. 2018;32(4):243–50. https://doi.org/10.1055/A-0753-1884.
Article
PubMed
Google Scholar
Veale JF. Edinburgh Handedness Inventory—short form: a revised version based on confirmatory factor analysis. Laterality. 2014;19(2):164–77. https://doi.org/10.1080/1357650X.2013.783045.
Article
PubMed
Google Scholar
Chen TC, Yang TJ, Huang MJ, Wang HS, Tseng KW, Chen HL, et al. Damage and the repeated bout effect of arm, leg, and trunk muscles induced by eccentric resistance exercises. Scand J Med Sci Sport. 2019;29(5):725–35. https://doi.org/10.1111/sms.13388.
Article
Google Scholar
Lau WY, Muthalib M, Nosaka K. Visual analog scale and pressure pain threshold for delayed onset muscle soreness assessment. J Musculoskelet Pain. 2013;21(4):320–6.
Article
Google Scholar
Lau WY, Blazevich AJ, Newton MJ, Wu SSX, Nosaka K. Reduced muscle lengthening during eccentric contractions as a mechanism underpinning the repeated-bout effect. Am J Physiol. 2015;308(10):879–86.
Google Scholar
Nosaka K, Newton M. Concentric or eccentric training effect on eccentric exercise-induced muscle damage. Med Sci Sports Exerc. 2002;34(1):63–9.
Article
Google Scholar
Seo DI, Kim E, Fahs CA, Rossow L, Young K, Ferguson SL, et al. Reliability of the one-repetition maximum test based on muscle group and gender. J Sports Sci Med. 2012;11(2):221–5.
PubMed
PubMed Central
Google Scholar
Nguyen D, Brown LE, Coburn JW, Judelson DA, Eurich AD, Khamoui AV, et al. Effect of delayed-onset muscle soreness on elbow flexion strength and rate of velocity development. J Strength Cond Res. 2009;23(4):1282–6.
Article
Google Scholar
Chen TC, Nosaka K. Responses of elbow flexors to two strenuous eccentric exercise bouts separated by three days. J Strength Cond Res. 2006;20(1):108–16.
PubMed
Google Scholar
Morishita S, Yamauchi S, Fujisawa C, Domen K. Rating of perceived exertion for quantification of the intensity of resistance exercise. Int J Phys Med Rehabil. 2013;1(9):172.
Google Scholar
Prieske O, Wick D, Granacher U. Intrasession and intersession reliability in maximal and explosive isometric torque production of the elbow flexors. J Strength Cond Res. 2014;28(6):1771–7.
Article
Google Scholar
Haefeli M, Elfering A. Pain assessment. Eur Spine J. 2006;15:S17–24. https://doi.org/10.1007/s00586-005-1044-x.
Article
PubMed
Google Scholar
Turk DC, Melzack R. The measurement of pain and the assessment of people experiencing pain. In: Turk DC, Melzack R, editors. Handbook of pain assessment. 3rd ed. New York, NY: The Guilford Press; 2011. p. 3–16.
Google Scholar
Lau WY, Blazevich AJ, Newton MJ, Wu SSX, Nosaka K. Assessment of muscle pain induced by elbow-flexor eccentric exercise. J Athl Train. 2015;50(11):1140–8.
Article
Google Scholar
Cheng JW, Tsai WC, Yu TY, Huang KY. Reproducibility of sonographic measurement of thickness and echogenicity of the plantar fascia. J Clin Ultrasound. 2012;40(1):14–9.
Article
CAS
Google Scholar
Bisi-Balogun A, Cassel M, Mayer F. Reliability of various measurement stations for determining plantar fascia thickness and echogenicity. Diagnostics. 2016;6(2):15.
Article
Google Scholar
Cruz-Montecinos C, González Blanche A, López Sánchez D, Cerda M, Sanzana-Cuche R, Cuesta-Vargas A. In vivo relationship between pelvis motion and deep fascia displacement of the medial gastrocnemius: anatomical and functional implications. J Anat. 2015;227(5):665–72. https://doi.org/10.1111/joa.12370.
Article
PubMed
PubMed Central
Google Scholar
Gajdosik RL. Influence of age on calf muscle length and passive stiffness variables at different stretch velocities. Isokinet Exerc Sci. 1997;6(3):163–74.
Article
Google Scholar
Lamontagne A, Malouin F, Richards CL. Viscoelastic behavior of plantar flexor muscle-tendon unit at rest. J Orthop Sports Phys Ther. 1997;26(5):244–52. https://doi.org/10.2519/jospt.1997.26.5.244.
Article
CAS
PubMed
Google Scholar
Krause F, Wilke J, Niederer D, Vogt L, Banzer W. Acute effects of foam rolling on passive stiffness, stretch sensation and fascial sliding: a randomized controlled trial. Hum Mov Sci. 2019;67:102514. https://doi.org/10.1016/j.humov.2019.102514.
Article
PubMed
Google Scholar
Dilley A, Greening J, Lynn B, Leary R, Morris V. The use of cross-correlation analysis between high-frequency ultrasound images to measure longitudinal median nerve movement. Ultrasound Med Biol. 2001;27(9):1211–8. https://doi.org/10.1016/S0301-5629(01)00413-6.
Article
CAS
PubMed
Google Scholar
Cohen J. Statistical power analysis for the behavioral sciences. Hoboken: Taylor and Francis; 1988.
Google Scholar
Cohen L, Manion L. Research methods in education. London: Croom Helm; 1980.
Google Scholar
Friden J, Kjorell U, Thornell LE. Delayed muscle soreness and cytoskeletal alterations: an immunocytological study in man. Int J Sports Med. 1984;5(1):15–8. https://doi.org/10.1055/s-2008-1025873.
Article
CAS
PubMed
Google Scholar
Friden J, Sjostrom M, Ekblom B. Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med. 1983;4(3):170–6. https://doi.org/10.1055/s-2008-1026030.
Article
CAS
PubMed
Google Scholar
Fridén J, Lieber RL. Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiol Scand. 2001;171:321–6. https://doi.org/10.1046/j.1365-201X.2001.00834.x.
Article
PubMed
Google Scholar
Newham DJ, McPhail G, Mills KR, Edwards RHT. Ultrastructural changes after concentric and eccentric contractions of human muscle. J Neurol Sci. 1983;61(1):109–22. https://doi.org/10.1016/0022-510X(83)90058-8.
Article
CAS
PubMed
Google Scholar
Solomonow M. Neuromuscular manifestations of viscoelastic tissue degradation following high and low risk repetitive lumbar flexion. J Electromyogr Kinesiol. 2012;22:155–75. https://doi.org/10.1016/j.jelekin.2011.11.008.
Article
CAS
PubMed
Google Scholar
Brown S, Day S, Donnelly A. Indirect evidence of human skeletal muscle damage and collagen breakdown after eccentric muscle actions. J Sports Sci. 1999;17(5):397–402. https://doi.org/10.1080/026404199365911.
Article
CAS
PubMed
Google Scholar
Takagi R, Ogasawara R, Tsutaki A, Nakazato K, Ishii N. Regional adaptation of collagen in skeletal muscle to repeated bouts of strenuous eccentric exercise. Pflugers Arch Eur J Physiol. 2016;468(9):1565–72. https://doi.org/10.1007/s00424-016-1860-3.
Article
CAS
Google Scholar
Koskinen SO, Ahtikoski AM, Komulainen J, Hesselink MK, Drost MR, Takala TE. Short-term effects of forced eccentric contractions on collagen synthesis and degradation in rat skeletal muscle. Pflugers Arch Eur J Physiol. 2002;444(1–2):59–72. https://doi.org/10.1007/s00424-002-0792-2.
Article
CAS
Google Scholar
Schleip R, Duerselen L, Vleeming A, Naylor IL, Lehmann-Horn F, Zorn A, et al. Strain hardening of fascia: static stretching of dense fibrous connective tissues can induce a temporary stiffness increase accompanied by enhanced matrix hydration. J Bodyw Mov Ther. 2012;16(19):94–100.
Article
Google Scholar
Pavan PG, Stecco A, Stern R, Stecco C. Painful connections: densification versus fibrosis of fascia. Curr Pain Headache Repo. 2014;18(8):441.
Article
Google Scholar
Konrad A, Tafilidis S, Tilp M, Konrad MA. Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties. Scand J Med Sci Sports. 2017;27(10):1070–80.
Article
CAS
Google Scholar
Clifford T, Ventress M, Allerton DM, Stansfield S, Tang JCY, Fraser WD, et al. The effects of collagen peptides on muscle damage, inflammation and bone turnover following exercise: a randomized, controlled trial. Amino Acids. 2019;51(4):691–704. https://doi.org/10.1007/s00726-019-02706-5.
Article
CAS
PubMed
Google Scholar
Frey Law LA, Evans S, Knudtson J, Nus S, Scholl K, Sluka KA. Massage reduces pain perception and hyperalgesia in experimental muscle pain: a randomized, controlled trial. J Pain. 2008;9(8):714–21. https://doi.org/10.1016/j.jpain.2008.03.009.
Article
PubMed
Google Scholar
Micklewright D. The effect of soft tissue release on delayed onset muscle soreness: a pilot study. Phys Ther Sport. 2009;10(1):19–24. https://doi.org/10.1016/j.ptsp.2008.09.003.
Article
PubMed
Google Scholar
Zainuddin Z, Newton M, Sacco P, Nosaka K. Effects of massage on delayed-onset muscle soreness, swelling, and recovery of muscle function. J Athl Train. 2005;40(3):174–80.
PubMed
PubMed Central
Google Scholar
Jay K, Sundstrup E, Søndergaard SD, Behm D, Brandt M, Særvoll CA, et al. Specific and cross over effects of massage for muscle soreness: randomized controlled trial. Int J Sports Phys Ther. 2014;9(1):82–91.
PubMed
PubMed Central
Google Scholar
Macdonald GZ, Button DC, Drinkwater EJ, Behm DG. Foam rolling as a recovery tool after an intense bout of physical activity. Med Sci Sports Exerc. 2014;46(1):131–42. https://doi.org/10.1249/MSS.0b013e3182a123db.
Article
PubMed
Google Scholar
Pearcey GEP, Bradbury-Squires DJ, Kawamoto JE, Drinkwater EJ, Behm DG, Button DC. Foam rolling for delayed-onset muscle soreness and recovery of dynamic performance measures. J Athl Train. 2015;50(1):5–13. https://doi.org/10.4085/1062-6050-50.1.01.
Article
PubMed
PubMed Central
Google Scholar
Romero-Moraleda B, La TR, Lerma-Lara S, Ferrer-Peña R, Paredes V, Peinado AB, et al. Neurodynamic mobilization and foam rolling improved delayed-onset muscle soreness in a healthy adult population: a randomized controlled clinical trial. PeerJ. 2017;2017(10):e3908. https://doi.org/10.7717/peerj.3908.
Article
CAS
Google Scholar
Zügel M, Maganaris CN, Wilke J, Jurkat-Rott K, Klingler W, Wearing SC, et al. Fascial tissue research in sports medicine: from molecules to tissue adaptation, injury and diagnostics: consensus statement. Br J Sport Med. 2018;52:1497. https://doi.org/10.1136/bjsports-2018-099308.
Article
Google Scholar