Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2020;70(4):313. https://doi.org/10.3322/caac.21609.
Article
Google Scholar
Barker HE, Paget JTE, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15:409–25.
Article
CAS
Google Scholar
Zhang X, Ashcraft KA, Betof Warner A, Nair SK, Dewhirst MW. Can exercise-induced modulation of the tumor physiologic microenvironment improve antitumor immunity? Cancer Res. 2019;79(10):2447–56. https://doi.org/10.1158/0008-5472.CAN-18-2468.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhani N, Fyles A, Hedley D, Milosevic M. The clinical significance of hypoxia in human cancers. Semin Nuclear Med. 2015;45(2):110–21.
Article
Google Scholar
Hill RP, Bristow RG, Fyles A, Koritzinsky M, Milosevic M, Wouters BG. Hypoxia and predicting radiation response. Semin Radiat Oncol. 2015;25(4):260–72.
Article
Google Scholar
Fiaschi T, Chiarugi P. Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. Int J Cell Biol. 2012. https://doi.org/10.1155/2012/762825.
Article
PubMed
PubMed Central
Google Scholar
Parker C, Milosevic M, Toi A, Sweet J, Panzarella T, Bristow R, et al. Polarographic electrode study of tumour oxygenation in clinically localised prostate cancer. Int J Radiat Oncol Biol Physics. 2004;58(3):750–7.
Article
Google Scholar
Milosevic M, Bristow R, Chung P, Panzarella T, Toi A, Hill R. Prostate cancer hypoxia correlates with poor patient outcome following treatment with radiotherapy. Int J Radiat Oncol Biol Physics. 2004;60(1):S236.
Article
Google Scholar
Chopra S, Foltz WD, Milosevic MF, Toi A, Bristow RG, Menard C, et al. Comparing oxygen-sensitive MRI (BOLD R2*) with oxygen electrode measurements: A pilot study in men with prostate cancer. Int J Radiat Biol. 2009;85(9):805–13.
Article
CAS
Google Scholar
Wang H, Mu X, He H, Zhang XD. Cancer Radiosensitizers. Trends Pharmacol Sci. 2018;39(1):24–48. https://doi.org/10.1016/j.tips.2017.11.003.
Article
CAS
PubMed
Google Scholar
Hoskin PJ, Rojas AM, Saunders MI, Bentzen SM, Motohashi KJ, BCON investigators. Carbogen and nicotinamide in locally advanced bladder cancer: early results of a phase-III randomized trial. Radiother Oncol. 2009;91(1):120–5. https://doi.org/10.1016/j.radonc.2008.10.001.
Article
CAS
PubMed
Google Scholar
Graham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomedicine. 2018;13:6049–58. https://doi.org/10.2147/IJN.S140462.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCullough DJ, Stabley JN, Siemann DW, Behnke BJ. Modulation of blood flow, hypoxia, and vascular function in orthotopic prostate tumors during exercise. J Natl Cancer Inst. 2014. https://doi.org/10.1093/jnci/dju036.
Article
PubMed
PubMed Central
Google Scholar
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21:363–83.
Article
CAS
Google Scholar
Cobley JN, Margaritelis NV, Morton JP, Close GL, Nikolaidis MG, Malone JK. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signalling, and their interplay. Front Physiol. 2015. https://doi.org/10.3389/fphys.2015.00182.
Article
PubMed
PubMed Central
Google Scholar
Mason SA, Morrison D, McConell GK, Wadley GD. Muscle redox signalling pathways in exercise Role of antioxidants. Free Radic Biol Med. 2016;98:29–45.
Article
CAS
Google Scholar
Kim J-S, Galvao DA, Newton RU, Gray E, Taaffe DR. Exercise-induced myokines and their effect on prostate cancer. Nat Rev Urol. 2021;18:519–42.
Article
CAS
Google Scholar
Vella L, Caldow MK, Larsen AE, Tassoni D, Della Gatta PA, Gran P, Russell AP, Cameron-Smith D. Resistance exercise increases NF-κB activity in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2012;302(6):667–73.
Article
Google Scholar
Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29(S16):15–8. https://doi.org/10.1053/sonc.2002.37263.
Article
CAS
PubMed
Google Scholar
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nat. 2011;473(7347):298–307. https://doi.org/10.1038/nature10144.
Article
CAS
Google Scholar
Carmeliet P. Angiogenesis in life, disease and medicine. Nat. 2005;438:932–6.
Article
CAS
Google Scholar
Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006;2(3):213–9.
Article
CAS
Google Scholar
Schumacher O, Galvao DA, Taaffe DR, Chee R, Spry N, Newton RU. Exercise modulation of tumour perfusion and hypoxia to improve radiotherapy response in prostate cancer. Prostate Cancer Prostatic Diseases. 2020. https://doi.org/10.1038/s41391-020-0245-z.
Article
PubMed
Google Scholar
Michiels C, Tellier C, Feron O. Cycling hypoxia: a key feature of the tumor microenvironment. Biochimica Biophysica Acta. 2016;1866:76–86.
CAS
Google Scholar
Tafani M, Pucci B, Russo A, Schito L, Pellegrini L, Perrone GA, et al. Modulators of HIF1α and NF κB in cancer treatment: is it a rational approach for controlling malignant progression? Frontiers Pharmacol. 2013;4(13):1–12.
CAS
Google Scholar
Tafani M, Sansone L, Limana F, Arcangeli T, De Santis E, Polese M, et al. The interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression. Oxid Med Cell Longev. 2016. https://doi.org/10.1155/2016/3907147.
Article
PubMed
Google Scholar
Martinive P, Defresne F, Bouzin C, Saliez J, Lair F, Gregoire V, et al. Preconditioning of the tumor vasculature and tumour cells by intermittent hypoxia: implications for anticancer therapies. Cancer Res. 2006;66:11736–44.
Article
CAS
Google Scholar
Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of oxygenation, free radicals, and stress granules. Cancer Cell. 2004;5:429–41.
Article
CAS
Google Scholar
Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Seminars Cell Develop Biol. 2018;80:50–64.
Article
CAS
Google Scholar
Simioni C, Zauli G, Martelli AM, Vitale M, Sacchetti G, Gonelli A, et al. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget. 2018;9(24):17181–98.
Article
Google Scholar
Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243–76. https://doi.org/10.1152/physrev.00031.2007.
Article
CAS
PubMed
Google Scholar
Friedenreich CM, Stone CR, Cheung WY, Hayes SC. Physical activity and mortality in cancer survivors: a systematic review and meta-analysis. JNCI Cancer Spectrum. 2020;4(1):pkz080.
Article
Google Scholar
Richman EL, Kenfield SA, Stampfer MJ, Paciorek A, Carroll PR, Chan JM. Physical activity after diagnosis and risk of prostate cancer progression: data from the cancer of the prostate strategic urologic research endeavor. Cancer Res. 2011;71(11):3889–95. https://doi.org/10.1158/0008-5472.CAN-10-3932.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vahabzadeh Z, Molodi M, Nikkho B, Saghebjoo M, Saedmocheshi S, Zamani F, et al. Aerobic training and hydroalcoholic extracts of green tea improve pro-oxidant-antioxidant balance and histopathological score in the n-methyl-n-nitrosourea-induced prostate cancer model of rat. EXCLI J. 2020;19:762–72.
PubMed
PubMed Central
Google Scholar
Saedmocheshi S, Saghebjoo M, Vahabzadeh Z, Sheikholeslami-Vatani D. Aerobic training and green tea extract protect against N-methyl-N-nitrosourea-induced prostate cancer. Med Sci Sports Exerc. 2019;51(11):2210–6. https://doi.org/10.1249/MSS.0000000000002054.
Article
CAS
PubMed
Google Scholar
Gueritat J, Lefeuvre-Orfila L, Vincent S, Cretual A, Ravanat JL, Gratas-Delamarche A, et al. Exercise training combined with antioxidant supplementation prevents the antiproliferative activity of their single treatment in prostate cancer through inhibition of redox adaptation. Free Radic Biol Med. 2014;77:95–105. https://doi.org/10.1016/j.freeradbiomed.2014.09.009.
Article
CAS
PubMed
Google Scholar
Zheng X, Cui X, Huang M, Liu Y, Wagner GC, Lin Y, et al. Inhibition of progression of androgen-dependent prostate LNCaP tumors to androgen independence in SCID mice by oral caffeine and voluntary exercise. Nutr Cancer. 2012;64(7):1029–37. https://doi.org/10.1080/01635581.2012.716899.
Article
CAS
PubMed
Google Scholar
Zheng X, Cui X, Gao Z, Zhao Y, Shi Y, Huang M, et al. Inhibitory effect of dietary atorvastatin and celecoxib together with voluntary running wheel exercise on the progression of androgen-dependent LNCaP prostate tumours to androgen independence. Exp Ther Med. 2011;2:221–8.
Article
CAS
Google Scholar
Esser KA, Harpole CE, Prins GS, Diamond AM. Physical activity reduces prostate carcinogenesis in a transgenic model. Prostate. 2009;69:1372–7.
Article
Google Scholar
Rundqvist H, Augsten M, Strömberg A, Rullman E, Mijwel S, Kharaziha P, et al. Effect of acute exercise on prostate cancer cell growth. PLoS ONE. 2013;8(7): e67579. https://doi.org/10.1371/journal.pone.0067579.
Article
CAS
PubMed
PubMed Central
Google Scholar
Opoku-Acheampong AB, Baumfalk DR, Horn AG, Kunkel ON, Ganta CK, McCullough DJ, et al. Prostate cancer cell growth characteristics in serum and prostate-conditioned media from moderate-intensity exercise-trained healthy and tumor-bearing rats. Am J Cancer Res. 2019;9(4):650–67.
CAS
PubMed
PubMed Central
Google Scholar
Jones LW, Viglianti BL, Tashjian JA, Kothadia SM, Keir ST, Freedland SJ, et al. Effect of aerobic exercise on tumor physiology in an animal model of human breast cancer. J Appl Physiol. 2010;108(2):343–8. https://doi.org/10.1152/japplphysiol.00424.2009.
Article
PubMed
Google Scholar
McCullough DJ, Nguyen LM, Siemann DW, Behnke BJ. Effects of exercise training on tumor hypoxia and vascular function in the rodent preclinical orthotopic prostate cancer model. J Appl Physiol. 2013;115(12):1846–54. https://doi.org/10.1152/japplphysiol.00949.2013.
Article
PubMed
PubMed Central
Google Scholar
Betof AS, Lascola CD, Weitzel D, Landon C, Scarbrough PM, Devi GR, et al. Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise. J Natl Cancer Inst. (2015) 107(5).
Schadler KL, Thomas NJ, Galie PA, Bhang DH, Roby KC, Addai P, et al. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy. Oncotarget. 2016;7(40):65429–40. https://doi.org/10.18632/oncotarget.11748.
Article
PubMed
PubMed Central
Google Scholar
Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92. https://doi.org/10.1016/j.cell.2011.09.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bedoya CAF, Cardoso ACF, Parker N, Ngo-Huang A, Petzel MQ, Kim MP, et al. Exercise during preoperative therapy increases tumor vascularity in pancreatic tumor patients. Sci Rep. 2019;9(1):13966. https://doi.org/10.1038/s41598-019-49582-3.
Article
CAS
Google Scholar
Ashcraft KA, Warner AB, Jones LW, Dewhirst MW. Exercise as adjunct therapy in cancer. Semin Radiat Oncol. 2019;29(1):16–24.
Article
Google Scholar
Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018;27(1):10–21. https://doi.org/10.1016/j.cmet.2017.09.015.
Article
CAS
PubMed
Google Scholar
Wiggins JM, Opoku-Acheampong AB, Baumfalk DR, Siemann DW, Behnke BJ. Exercise and the tumor microenvironment: potential therapeutic implications. Exerc Sport Sci Rev. 2018;46(1):56–64. https://doi.org/10.1249/JES.0000000000000137.
Article
PubMed
Google Scholar
Christensen JF, Simonsen C, Hojman P. Exercise training in cancer control and treatment. Compr Physiol. 2018;9(1):165–205. https://doi.org/10.1002/cphy.c180016.
Article
PubMed
Google Scholar
Jones LW, Fels DR, West M, Allen JD, Broadwater G, Barry WT, et al. Modulation of circulating angiogenic factors and tumor biology by aerobic training in breast cancer patients receiving neoadjuvant chemotherapy. Cancer Prev Res. 2013;6(9):925–37. https://doi.org/10.1158/1940-6207.CAPR-12-0416.
Article
CAS
Google Scholar
Assi M, Dufresne S, Rébillard A. Exercise shapes redox signaling in cancer. Redox Biol. 2020;18: 101439. https://doi.org/10.1016/j.redox.2020.101439.
Article
CAS
Google Scholar
Louzada RA, Bouviere J, Matta LP, Werneck-de-Castro JP, Dupuy C, Carvalho DP, et al. Redox signaling in widespread health benefits of exercise. Antioxid Redox Signal. 2020;33(11):745–60. https://doi.org/10.1089/ars.2019.7949.
Article
CAS
Google Scholar
Van Blarigan EL, Gerstenberger JP, Kenfield SA, Giovannucci EL, Stampfer MJ, Jones LW, et al. Physical activity and prostate tumor vessel morphology: data from the health professionals follow-up study. Cancer Prev Res. 2015;8(10):962–7. https://doi.org/10.1158/1940-6207.CAPR-15-0132.
Article
Google Scholar
Grimes DR, Partridge M. A mechanistic investigation of the oxygen fixation hypothesis and oxygen enhancement ratio. Biomed Phys Eng Express. 2015;1(4): 045209. https://doi.org/10.1088/2057-1976/1/4/045209.
Article
PubMed
PubMed Central
Google Scholar
Dufresne S, Guéritat J, Chiavassa S, Noblet C, Assi M, Rioux-Leclercq N, et al. Exercise training improves radiotherapy efficiency in a murine model of prostate cancer. FASEB J. 2020;34(4):4984–96. https://doi.org/10.1096/fj.201901728R.
Article
CAS
PubMed
Google Scholar
Wennerberg E, Lhuillier C, Rybstein MD, Dannenberg K, Rudqvist N, Koelwyn GJ, et al. Exercise reduces immune suppression and breast cancer progression in a preclinical model. Oncotarget. 2020;11(4):452–61.
Article
Google Scholar
Ohl K, Tenbrock K. Reactive oxygen species as regulators of MDSC-mediated immune suppression. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.02499.
Article
PubMed
PubMed Central
Google Scholar
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal. 2013;18(10):1208–46.
Article
CAS
Google Scholar
Kenfield SA, Stampfer MJ, Giovannucci E, Chan JM. Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study. J Clin Oncol. 2011;29(6):726–32. https://doi.org/10.1200/JCO.2010.31.5226.
Article
PubMed
PubMed Central
Google Scholar
Dai JY, Wang B, Wang X, Cheng A, Kolb S, Stanford JL, et al. Vigorous physical activity is associated with metastatic-lethal progression in prostate cancer and differential tumor DNA methylation in the CRACR2A gene. Cancer Epidemiol Biomarkers Prev. 2018;28(2):258–64. https://doi.org/10.1158/1055-9965.EPI-18-0622.
Article
PubMed
PubMed Central
Google Scholar
Xian D, Song J, Yang L, Xiong X, Lai R, Zhong J. Emerging roles of redox-mediated angiogenesis and oxidative stress in dermatoses. Oxid Med Cell Longev. 2019. https://doi.org/10.1155/2019/2304018.
Article
PubMed
PubMed Central
Google Scholar
Repka CP, Hayward R. Oxidative stress and fitness changes in cancer patients after exercise training. Med Sci Sports Exerc. 2016;48(4):607–14. https://doi.org/10.1249/MSS.0000000000000821.
Article
CAS
PubMed
Google Scholar
Kalyanaraman B, Cheng G, Hardy M, Ouari O, Bennett B, Zielonka J. Teaching the basics of reactive oxygen species and their relevance to cancer biology: mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biol. 2018;15:347–62. https://doi.org/10.1016/j.redox.2017.12.012.
Article
CAS
PubMed
Google Scholar