United Nations, Department of Economic and Social Affairs PD. World population ageing 2019. New York; 2020;ST/ESA/SER.A/444.
Prince MJ, Wu F, Guo Y, Gutierrez Robledo LM, O’Donnell M, Sullivan R, et al. The burden of disease in older people and implications for health policy and practice. Lancet. 2015;385(9967):549-62. https://doi.org/10.1016/S0140-6736(14)61347-7. Epub 2014 Nov 6.
UN General Assembly. 67th session, December 2012. Resolution A/RES/67/81.
Roberts CK, Barnard RJ. Effects of exercise and diet on chronic disease. J Appl Physiol. 2005;98(1):3–30. https://doi.org/10.1152/japplphysiol.00852.2004.
Article
PubMed
Google Scholar
U.S. Department of Health and Human Services. Physical activity guidelines for Americans. 2nd ed. U.S. Department of Health and Human Services, editor. Okla, Nurse. Washington, DC; 2018.
Gibala MJ, Gillen JB, Percival ME. Physiological and health-related adaptations to low-volume interval training: influences of nutrition and sex. Sport Med. 2014;44(S2):127–37. https://doi.org/10.1007/s40279-014-0259-6.
Article
Google Scholar
Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48:1227–34.
Article
PubMed
Google Scholar
Karlsen T, Aamot I-L, Haykowsky M, Rognmo Ø. High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis. 2017;60(1):67–77. https://doi.org/10.1016/j.pcad.2017.03.006.
Article
PubMed
Google Scholar
Stork MJ, Banfield LE, Gibala MJ, Martin Ginis KA. A scoping review of the psychological responses to interval exercise: is interval exercise a viable alternative to traditional exercise? Health Psychol Rev. 2017;11:324–44.
Article
PubMed
Google Scholar
Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32. https://doi.org/10.1080/1364557032000119616.
Article
Google Scholar
Sundell J. Resistance training is an effective tool against metabolic and frailty syndromes. Adv Prev Med. 2011;2011:1–7. https://doi.org/10.4061/2011/984683.
Article
Google Scholar
Littbrand H, Rosendahl E, Lindelöf N, Lundin-Olsson L, Gustafson Y, Nyberg L. A high-intensity functional weight-bearing exercise program for older people dependent in activities of daily living and living in residential care facilities: evaluation of the applicability with focus on cognitive function. Phys Ther. 2006;86(4):489–98. https://doi.org/10.1093/ptj/86.4.489.
Article
PubMed
Google Scholar
Vanhees L, Geladas N, Hansen D, Kouidi E, Niebauer J, Reiner Ž, et al. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular risk factors: recommendations from the EACPR (Part II). Eur J Prev Cardiol. 2012;19(5):1005–33. https://doi.org/10.1177/1741826711430926.
Article
CAS
PubMed
Google Scholar
Norton K, Norton L, Sadgrove D. Position statement on physical activity and exercise intensity terminology. J Sci Med Sport. 2010;13(5):496–502. https://doi.org/10.1016/j.jsams.2009.09.008.
Article
PubMed
Google Scholar
Capellá IL, Benito Peinado PJ, Barriopedro Moro MI, Revenga JB, Esteves NK, Calderón Montero FJ. Determining the ventilatory inter-threshold area in individuals with different endurance capacities. Apunt Med l’Esport. 2018;53(199):91–7. https://doi.org/10.1016/j.apunts.2017.11.003.
Article
Google Scholar
Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Reply from M. J. Gibala, J. P. Little, M. J. MadDonald and J. A. Hawley. J Physiol. 2012;590:3391.
Article
CAS
PubMed Central
Google Scholar
Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sport Exerc. 2011;43(10):1849–56. https://doi.org/10.1249/MSS.0b013e3182199834.
Article
CAS
Google Scholar
Aboarrage Junior AM, Teixeira CVLS, dos Santos RN, Machado AF, Evangelista AL, Rica RL, et al. A high-intensity jump-based aquatic exercise program improves bone mineral density and functional fitness in postmenopausal women. Rejuvenation Res. 2018;21:535–40.
Article
PubMed
Google Scholar
Adamson S, Kavaliauskas M, Yamagishi T, Phillips S, Lorimer R, Babraj J. Extremely short duration sprint interval training improves vascular health in older adults. Sport Sci Health. 2019;15(1):123–31. https://doi.org/10.1007/s11332-018-0498-2.
Article
Google Scholar
Bailey TG, Perissiou M, Windsor M, Russell F, Golledge J, Green DJ, et al. Cardiorespiratory fitness modulates the acute flow-mediated dilation response following high-intensity but not moderate-intensity exercise in elderly men. J Appl Physiol. 2017;122(5):1238–48. https://doi.org/10.1152/japplphysiol.00935.2016.
Article
PubMed
Google Scholar
Brown BM, Frost N, Rainey-Smith SR, Doecke J, Markovic S, Gordon N, et al. High-intensity exercise and cognitive function in cognitively normal older adults: a pilot randomised clinical trial. Alzheimers Res Ther. 2021;13(1):33. https://doi.org/10.1186/s13195-021-00774-y.
Article
PubMed
PubMed Central
Google Scholar
Bruseghini P, Calabria E, Tam E, Milanese C, Oliboni E, Pezzato A, et al. Effects of eight weeks of aerobic interval training and of isoinertial resistance training on risk factors of cardiometabolic diseases and exercise capacity in healthy elderly subjects. Oncotarget. 2015;6:16998–7015.
Article
PubMed
PubMed Central
Google Scholar
Bruseghini P, Tam E, Calabria E, Milanese C, Capelli C, Galvani C. High intensity interval training does not have compensatory effects on physical activity levels in older adults. Int J Environ Res Public Health. 2020;17(3):1083. https://doi.org/10.3390/ijerph17031083.
Article
PubMed Central
Google Scholar
Coswig VS, Barbalho M, Raiol R, Del Vecchio FB, Ramirez-Campillo R, Gentil P. Effects of high vs moderate-intensity intermittent training on functionality, resting heart rate and blood pressure of elderly women. J Transl Med. 2020;18(1):88. https://doi.org/10.1186/s12967-020-02261-8.
Article
PubMed
PubMed Central
Google Scholar
Donath L, Kurz E, Roth R, Zahner L, Faude O. Different ankle muscle coordination patterns and co-activation during quiet stance between young adults and seniors do not change after a bout of high intensity training. BMC Geriatr. 2015;15:19.
Article
PubMed
PubMed Central
Google Scholar
Herrod PJJ, Lund JN, Phillips BE. Time-efficient physical activity interventions to reduce blood pressure in older adults: a randomised controlled trial. England: Age Ageing; 2020.
Google Scholar
Herrod PJJ, Blackwell JEM, Boereboom CL, Atherton PJ, Williams JP, Lund JN, et al. The time course of physiological adaptations to high-intensity interval training in older adults. Aging Med. 2020;3(4):245–51. https://doi.org/10.1002/agm2.12127.
Article
Google Scholar
Hwang C-L, Yoo J-K, Kim H-K, Hwang M-H, Handberg EM, Petersen JW, et al. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults. Exp Gerontol. 2016;82:112–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim H-K, Hwang C-L, Yoo J-K, Hwang M-H, Handberg EM, Petersen JW, et al. All-extremity exercise training improves arterial stiffness in older adults. Med Sci Sport Exerc. 2017;49(7):1404–11. https://doi.org/10.1249/MSS.0000000000001229.
Article
Google Scholar
Kovacevic A, Fenesi B, Paolucci E, Heisz JJ. The effects of aerobic exercise intensity on memory in older adults. Appl Physiol Nutr Metab. 2020;45:591–600.
Article
PubMed
Google Scholar
Krusnauskas R, Venckunas T, Snieckus A, Eimantas N, Baranauskiene N, Skurvydas A, et al. Very low volume high-intensity interval exercise is more effective in young than old women. Biomed Res Int. 2018;2018:1–9. https://doi.org/10.1155/2018/8913187.
Article
CAS
Google Scholar
Linares AM, Goncin N, Stuckey M, Burgomaster KA, Dogra S. Acute cardiopulmonary response to interval and continuous exercise in older adults. J Strength Cond Res. 2020. https://doi.org/10.1519/JSC.0000000000003933. Publish ahead of print.
McSween M-P, McMahon KL, Maguire K, Coombes JS, Rodriguez AD, Erickson KI, et al. The acute effects of different exercise intensities on associative novel word learning in healthy older adults: a randomized controlled trial. J Aging Phys Act. 2021. p. 1–14. https://doi.org/10.1123/japa.2020-0093. Online ahead of print.
Mejías-Peña Y, Rodriguez-Miguelez P, Fernandez-Gonzalo R, Martínez-Flórez S, Almar M, de Paz JA, et al. Effects of aerobic training on markers of autophagy in the elderly. Age (Omaha). 2016;38:33.
Article
CAS
Google Scholar
Mekari S, Neyedli HF, Fraser S, O’Brien MW, Martins R, Evans K, et al. High-intensity interval training improves cognitive flexibility in older adults. Brain Sci. 2020;10(11):796. https://doi.org/10.3390/brainsci10110796.
Article
PubMed Central
Google Scholar
Nakajima K, Takeoka M, Mori M, Hashimoto S, Sakurai A, Nose H, et al. Exercise effects on methylation of ASC gene. Int J Sports Med. 2010;31(09):671–5. https://doi.org/10.1055/s-0029-1246140.
Article
CAS
PubMed
Google Scholar
Nederveen JP, Joanisse S, Séguin CML, Bell KE, Baker SK, Phillips SM, et al. The effect of exercise mode on the acute response of satellite cells in old men. Acta Physiol. 2015;215:177–90.
Article
CAS
Google Scholar
O’Brien MW, Johns JA, Robinson SA, Bungay A, Mekary S, Kimmerly DS. Impact of high-intensity interval training, moderate-intensity continuous training, and resistance training on endothelial function in older adults. Med Sci Sport Exerc. 2020;52:1057–67.
Article
CAS
Google Scholar
Osuka Y, Matsubara M, Hamasaki A, Hiramatsu Y, Ohshima H, Tanaka K. Development of low-volume, high-intensity, aerobic-type interval training for elderly Japanese men: a feasibility study. Eur Rev Aging Phys Act. 2017;14:14.
Article
PubMed
PubMed Central
Google Scholar
Stockwell TB, McKean MR, Burkett BJ. Response to constant and interval exercise protocols in the elderly. J Exerc Physiol Online. 2012;15:30–9.
Google Scholar
Yasar Z, Dewhurst S, Hayes LD, et al. Sports. 2019;7:94.
Article
PubMed Central
Google Scholar
Venckunas T, Krusnauskas R, Snieckus A, Eimantas N, Baranauskiene N, Skurvydas A, et al. Acute effects of very low-volume high-intensity interval training on muscular fatigue and serum testosterone level vary according to age and training status. Eur J Appl Physiol. 2019;119:1725–33.
Article
CAS
PubMed
Google Scholar
Vogel T, Leprêtre P-M, Brechat P-H, Lonsdorfer E, Benetos A, Kaltenbach G, et al. Effects of a short-term personalized intermittent work exercise program (IWEP) on maximal cardio-respiratory function and endurance parameters among healthy young and older seniors. J Nutr Health Aging. 2011;15(10):905–11. https://doi.org/10.1007/s12603-011-0087-4.
Article
CAS
PubMed
Google Scholar
Windsor MT, Bailey TG, Perissiou M, Meital L, Golledge J, Russell FD, et al. Cytokine responses to acute exercise in healthy older adults: the effect of cardiorespiratory fitness. Front Physiol. 2018;9:203.
Article
PubMed
PubMed Central
Google Scholar
Wyckelsma VL, Levinger I, Murphy RM, Petersen AC, Perry BD, Hedges CP, et al. Intense interval training in healthy older adults increases skeletal muscle [3H]ouabain-binding site content and elevates Na+,K+-ATPase α2 isoform abundance in type II fibers. Physiol Rep. 2017;5:e13219.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yoo J-K, Pinto MM, Kim H-K, Hwang C-L, Lim J, Handberg EM, et al. Sex impacts the flow-mediated dilation response to acute aerobic exercise in older adults. Exp Gerontol. 2017;91:57–63.
Article
PubMed
Google Scholar
Bailey TG, Perissiou M, Windsor MT, Schulze K, Nam M, Magee R, et al. Effects of acute exercise on endothelial function in patients with abdominal aortic aneurysm. Am J Physiol Circ Physiol. 2018;314(1):H19–30. https://doi.org/10.1152/ajpheart.00344.2017.
Article
CAS
Google Scholar
Currie KD, McKelvie RS, MJ MD. Flow-mediated dilation is acutely improved after high-intensity interval exercise. Med Sci Sport Exerc. 2012;44:2057–64.
Article
Google Scholar
Currie KD, Dubberley JB, McKelvie RS. Macdonald. MJ. Low-volume, high-intensity interval training in patients with CAD. Med Sci Sport Exerc. 2013;45:1436–42.
Article
Google Scholar
dos Santos JM, Gouveia MC, de Souza Júnior FA, da Silva Rodrigues CE, dos Santos JM, de Oliveira AJS, et al. Effect of a high-intensity interval training session on post-exercise hypotension and autonomic cardiac activity in hypertensive elderly subjects. J Exerc Physiol Online. 2018;21:58–70.
Google Scholar
Guiraud T, Juneau M, Nigam A, Gayda M, Meyer P, Mekary S, et al. Optimization of high intensity interval exercise in coronary heart disease. Eur J Appl Physiol. 2010;108(4):733–40. https://doi.org/10.1007/s00421-009-1287-z.
Article
PubMed
Google Scholar
Helgerud J, Wang E, Mosti MP, Wiggen ØN, Hoff J. Plantar flexion training primes peripheral arterial disease patients for improvements in cardiac function. Eur J Appl Physiol. 2009;106(2):207–15. https://doi.org/10.1007/s00421-009-1011-z.
Article
PubMed
Google Scholar
Moore JL, Nordvik JE, Erichsen A, Rosseland I, Bø E, Hornby TG, et al. Implementation of high-intensity stepping training during inpatient stroke rehabilitation improves functional outcomes. Barkenaes T, Byhring M, Grimstad I, Haga M, Halvorsen J, Henderson C, Mbalilaki JA, Rimehaug SA, Saether K, Tomren T, Vergoossen K BH, editor. Stroke; 2020;51:563–570.
Nepveu J-F, Thiel A, Tang A, Fung J, Lundbye-Jensen J, Boyd LA, et al. A single bout of high-intensity interval training improves motor skill retention in individuals with stroke. Neurorehabil Neural Repair. 2017;31:726–35.
Article
PubMed
Google Scholar
Reichert T, Kanitz AC, Delevatti RS, Bagatini NC, Barroso BM, LFM K. Continuous and interval training programs using deep water running improves functional fitness and blood pressure in the older adults. Age (Omaha). 2016;38:20.
Article
Google Scholar
Sosner P, Gayda M, Dupuy O, Garzon M, Lemasson C, Gremeaux V, et al. Ambulatory blood pressure reduction following high-intensity interval exercise performed in water or dryland condition. J Am Soc Hypertens. 2016;10:420–8.
Article
PubMed
Google Scholar
Tew GA, Batterham AM, Colling K, Gray J, Kerr K, Kothmann E, et al. Randomized feasibility trial of high-intensity interval training before elective abdominal aortic aneurysm repair. Br J Surg. 2017;104(13):1791–801. https://doi.org/10.1002/bjs.10669.
Article
CAS
PubMed
Google Scholar
Windsor MT, Bailey TG, Perissiou M, Greaves K, Jha P, Leicht AS, et al. Acute inflammatory responses to exercise in patients with abdominal aortic aneurysm. Med Sci Sport Exerc. 2018;50:649–58.
Article
Google Scholar
Angadi SS, Mookadam F, Lee CD, Tucker WJ, Haykowsky MJ, Gaesser GA. High-intensity interval training vs. moderate-intensity continuous exercise training in heart failure with preserved ejection fraction: a pilot study. J Appl Physiol. 2015;119:753–8.
Article
CAS
PubMed
Google Scholar
Ellingsen Ø, Halle M, Conraads V, Støylen A, Dalen H, Delagardelle C, et al. High-intensity interval training in patients with heart failure with reduced ejection fraction. Circulation. 2017;135(9):839–49. https://doi.org/10.1161/CIRCULATIONAHA.116.022924.
Article
PubMed
PubMed Central
Google Scholar
Fu T, Wang C-H, Lin P-S, Hsu C-C, Cherng W-J, Huang S-C, et al. Aerobic interval training improves oxygen uptake efficiency by enhancing cerebral and muscular hemodynamics in patients with heart failure. Int J Cardiol. 2013;167(1):41–50. https://doi.org/10.1016/j.ijcard.2011.11.086.
Article
PubMed
Google Scholar
Iellamo F, Caminiti G, Sposato B, Vitale C, Massaro M, Rosano G, et al. Effect of high-intensity interval training versus moderate continuous training on 24-h blood pressure profile and insulin resistance in patients with chronic heart failure. Intern Emerg Med. 2014;9(5):547–52. https://doi.org/10.1007/s11739-013-0980-4.
Article
PubMed
Google Scholar
Isaksen K, Munk PS, Valborgland T, Larsen AI. Aerobic interval training in patients with heart failure and an implantable cardioverter defibrillator: a controlled study evaluating feasibility and effect. Eur J Prev Cardiol. 2015;22:296–303.
Article
PubMed
Google Scholar
Isaksen K, Munk P, Giske R, Larsen A. Effects of aerobic interval training on measures of anxiety, depression and quality of life in patients with ischaemic heart failure and an implantable cardioverter defibrillator: a prospective non-randomized trial. J Rehabil Med. Sweden. 2016;48(3):300–6. https://doi.org/10.2340/16501977-2043.
Article
Google Scholar
Munch GW, Iepsen UW, Ryrsø CK, Rosenmeier JB, Pedersen BK, Mortensen SP. Effect of 6 weeks of high-intensity one-legged cycling on functional sympatholysis and ATP signaling in patients with heart failure. Am J Physiol Circ Physiol; 2017;314:ajpheart.00379.
Spee RF, Niemeijer VM, Schoots T, Tuinenburg A, Houthuizen P, Wijn PF, et al. High intensity interval training after cardiac resynchronization therapy: An explorative randomized controlled trial. Int J Cardiol. 2020;299:169–74. https://doi.org/10.1016/j.ijcard.2019.07.023.
Article
PubMed
Google Scholar
Thijssen DHJ, Benda NMM, Kerstens TP, Seeger JPH, van Dijk APJ, Hopman MTE. 12-week exercise training, independent of the type of exercise, attenuates endothelial ischaemia-reperfusion injury in heart failure patients. Front Physiol. 2019;10:264.
Article
PubMed
PubMed Central
Google Scholar
Andonian BJ, Bartlett DB, Huebner JL, Willis L, Hoselton A, Kraus VB, et al. Effect of high-intensity interval training on muscle remodeling in rheumatoid arthritis compared to prediabetes. Arthritis Res Ther. 2018;20(1):283. https://doi.org/10.1186/s13075-018-1786-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartlett DB, Slentz CA, Willis LH, Hoselton A, Huebner JL, Kraus VB, et al. Rejuvenation of neutrophil functions in association with reduced diabetes risk following ten weeks of low-volume high intensity interval walking in older adults with prediabetes – a pilot study. Front Immunol. 2020;11:729. https://doi.org/10.3389/fimmu.2020.00729.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boukabous I, Marcotte-Chénard A, Amamou T, Boulay P, Brochu M, Tessier D, et al. Low-volume high-intensity interval training versus moderate-intensity continuous training on body composition, cardiometabolic profile, and physical capacity in older women. J Aging Phys Act. 2019;27:879–89.
Article
PubMed
Google Scholar
Hwang C-L, Lim J, Yoo J-K, Kim H-K, Hwang M-H, Handberg EM, et al. Effect of all-extremity high-intensity interval training vs. moderate-intensity continuous training on aerobic fitness in middle-aged and older adults with type 2 diabetes: A randomized controlled trial. Exp Gerontol. 2019;116:46–53.
Article
PubMed
Google Scholar
Karstoft K, Brinkløv CF, Thorsen IK, Nielsen JS, Ried-Larsen M. Resting metabolic rate does not change in response to different types of training in subjects with type 2 diabetes. Front Endocrinol (Lausanne). 2017;8:132.
Article
Google Scholar
Maillard F, Rousset S, Pereira B, Traore A, de Pradel Del Amaze P, Boirie Y, et al. High-intensity interval training reduces abdominal fat mass in postmenopausal women with type 2 diabetes. Diabetes Metab. 2016;42(6):433–41. https://doi.org/10.1016/j.diabet.2016.07.031.
Article
CAS
PubMed
Google Scholar
Mohammadi R, Fathi M, Hejazi K, Ilkhani B. The effect of eight weeks high-intensity interval aerobic training on chimerin and visfatin in overweight men. J Phys Educ Sport Sci. 2017;11:200–6.
Google Scholar
Pandey A, Suskin N, Poirier P. The impact of burst exercise on cardiometabolic status of patients newly diagnosed with type 2 diabetes. Can J Cardiol. 2017;33(12):1645–51. https://doi.org/10.1016/j.cjca.2017.09.019.
Article
PubMed
Google Scholar
Banerjee S, Manley K, Shaw B, Lewis L, Cucato G, Mills R, et al. Vigorous intensity aerobic interval exercise in bladder cancer patients prior to radical cystectomy: a feasibility randomised controlled trial. Support Care Cancer. 2017;26:1515–23.
PubMed
Google Scholar
Devin JL, Hill MM, Mourtzakis M, Quadrilatero J, Jenkins DG, Skinner TL. Acute high intensity interval exercise reduces colon cancer cell growth. J Physiol. 2019;597(8):2177–84. https://doi.org/10.1113/JP277648.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiorelli CM, Ciolac EG, Simieli L, Silva FA, Fernandes B, Christofoletti G, et al. Differential acute effect of high-intensity interval or continuous moderate exercise on cognition in individuals with Parkinson’s disease. J Phys Act Heal. 2019;16:157–64.
Article
Google Scholar
Hoffmann K, Sobol NA, Frederiksen KS, Beyer N, Vogel A, Vestergaard K, et al. Moderate-to-high intensity physical exercise in patients with Alzheimer’s disease: a randomized controlled trial. J Alzheimers Dis. 2015;50:443–53.
Article
Google Scholar
Keogh JW, Grigg J, Vertullo CJ. Is high-intensity interval cycling feasible and more beneficial than continuous cycling for knee osteoarthritic patients? Results of a randomised control feasibility trial. PeerJ. 2018;6:e4738.
Article
PubMed
PubMed Central
Google Scholar
Mitropoulos A, Gumber A, Crank H, Akil M. Klonizakis M. The effects of upper and lower limb exercise on the microvascular reactivity in limited cutaneous systemic sclerosis patients. Arthritis Res Ther. 2018;20:112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Northey JM, Pumpa KL, Quinlan C, Ikin A, Toohey K, Smee DJ, et al. Cognition in breast cancer survivors: a pilot study of interval and continuous exercise. J Sci Med Sport. 2019;22:580–5.
Article
PubMed
Google Scholar
Rizk AK, Wardini R, Chan-Thim E, Bacon SL, Lavoie KL, Pepin V. Acute responses to exercise training and relationship with exercise adherence in moderate chronic obstructive pulmonary disease. Chron Respir Dis. 2015;12(4):329–39. https://doi.org/10.1177/1479972315598691.
Article
PubMed
Google Scholar
Rodríguez DA, Arbillaga A, Barberan-Garcia A, Ramirez-Sarmiento A, Torralba Y, Vilaró J, et al. Effects of interval and continuous exercise training on autonomic cardiac function in COPD patients. Clin Respir J. 2016;10(1):83–9. https://doi.org/10.1111/crj.12189.
Article
CAS
PubMed
Google Scholar
Uc EY, Doerschug KC, Magnotta V, Dawson JD, Thomsen TR, Kline JN, et al. Phase I/II randomized trial of aerobic exercise in Parkinson disease in a community setting. Neurology. 2014;83(5):413–25. https://doi.org/10.1212/WNL.0000000000000644.
Article
PubMed
PubMed Central
Google Scholar
Buchheit M, Laursen PB. High-Intensity Interval Training, Solutions to the Programming Puzzle. Sport Med. 2013;43(5):313–38. https://doi.org/10.1007/s40279-013-0029-x.
Article
Google Scholar
StØren Ø, Helgerud J, SÆbØ M, EM SØ, Bratland-Sanda S, Unhjem RJ, et al. The effect of age on the V˙O2max response to high-intensity interval training. Med Sci Sport Exerc. 2017;49:78–85.
Article
Google Scholar
Butt I, Shrestha BM. Two-hit hypothesis and multiple organ dysfunction syndrome. J Nepal Med Assoc. B. M. Shrestha, Sheffield Kidney Institute, Herries Road, Sheffield, S5 7AU, United Kingdom. E-mail: shresthabm@doctors.net.uk: Nepal Medical Association (Exhibition Road, post box 189, Kathmandu, Nepal). 2008;47:82–5.
Article
CAS
Google Scholar
Smart NA, Dieberg G, Giallauria F. Intermittent versus continuous exercise training in chronic heart failure: a meta-analysis. Int J Cardiol. 2013;166(2):352–8. https://doi.org/10.1016/j.ijcard.2011.10.075.
Article
PubMed
Google Scholar
Milanovic Z, Sporis G, Weston M, et al. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max Improvements: a systematic review and meta-analysis of controlled trials. Sports Med. 2015;45:1469–81.
Article
PubMed
Google Scholar
Williams CJ, Gurd BJ, Bonafiglia JT, Voisin S, Li Z, Harvey N, et al. A multi-center comparison of O2peak trainability between interval training and moderate intensity continuous training. Front Physiol. 2019;10:19.
Article
PubMed
PubMed Central
Google Scholar
Keating SE, Johnson NA, Mielke GI, Coombes JS. A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obes Rev. 2017;18:943–64.
Article
CAS
PubMed
Google Scholar
Wewege M, van den Berg R, Ward RE, Keech A. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes Rev. 2017;18:635–46.
Article
CAS
PubMed
Google Scholar
Jaul E, Barron J. Age-related diseases and clinical and public health implications for the 85 years old and over population. Front Public Heal. 2017;5.
Atella V, Piano Mortari A, Kopinska J, Belotti F, Lapi F, Cricelli C, et al. Trends in age-related disease burden and healthcare utilization. Aging Cell. 2019;18:e12861.
Article
CAS
PubMed
Google Scholar
Statistics Canada. Table 13-10-0466-01 Healthy aging indicators, Canadian Community Health Survey, Healthy Aging. 2010.
Roberts KC, Rao DP, Bennett TL, Loukine L, Jayaraman GC. Prevalence and patterns of chronic disease multimorbidity and associated determinants in Canada. Heal Promot Chronic Dis Prev Canada. 2015;35:87–94.
Article
CAS
Google Scholar