Ultra-endurance sport attracts older athletes due to age restrictions on participation and possibly the fact that many long distance athletes compete in shorter distances before attempting ultra-endurance events. The mean age of athletes studied was 39 years. Marathon finishing times of participants demonstrated that both elite runners and recreational athletes were included in the sample, increasing the likelihood of results being representative of the female ultra-marathon running community.
A disturbingly small percentage (7.5 %) of participants knew about the triad. The majority (80 %) of these were international runners from Europe, USA or Australia. The most knowledgeable athletes had obtained their knowledge at school or university. It is likely that these are younger athletes with recent education which has been influenced by the Female Athlete Triad Coalition and other regulatory bodies’ drive for pre-participation evaluation and education [11, 17]. This lack of knowledge is concerning since endurance athletes are at increased risk due to the high volume training associated with ultra-marathon preparation and possible inadvertent low energy availability [18]. Only 1 % of participants could name all three triad components which is lower than the 10 % reported by Australian women [8]. Knowledge of negative health implications of the triad was equally poor with only 3.9 and 2.3 % able to name one and two negative consequences, respectively. Similar rates were found in an American study in which more than 90 % of female high school track athletes were unable to link menstrual irregularity with negative bone consequences [17].
Very few participants believed they were at risk for the triad, possibly since 83.3 % were unsure what the triad was. The 44 participants who explicitly stated that they were not at risk demonstrate blissful ignorance and are therefore unlikely to pursue further understanding of the triad. It could be argued that simply engaging in endurance training places female athletes at risk, which may be mitigated by education on nutritional intake and careful dietary monitoring. However, female endurance athletes often seek to reduce body weight without seeking professional guidance, resulting in chronic energy deficiency [19].
The fact that 48.4 % of participants believed amenorrhoea to be normal with heavy training is concerning and higher than the 35 % reported by Australian women [8]. These athletes are unlikely to seek medical attention for amenorrhoea, resulting in a missed opportunity for early intervention. In addition, this belief may cause athletes to use amenorrhoea as an indicator of hard training, driving them towards this “marker” of adequate training. Amenorrhoea may also be considered “convenient” by athletes since they are relieved of the discomfort caused by menstruation. Conversely, low energy might initially result in subclinical menstrual disorders still placing athletes at risk since these disorders go undetected when athletes use amenorrhoea as a “red flag” for excessive training [20, 21].
Fifty percent of women capable of normal menstrual cycles reported changes with increasing exercise, similar to other studies that reported 43–78 % of athletes with menstrual dysfunction, exacerbated by increasing training [16, 21, 22]. Menstrual dysfunction is a useful triad screening tool but was not applicable to many older athletes due to Mirena® use, postmenopausal status or previous hysterectomy [11, 21, 23]. Postmenopausal females are already in a hypo-estrogenic state and at risk for osteoporosis. Energy deficits with resultant oestrogen deficiency leads to abnormal bone remodelling placing energy deficient postmenopausal athletes at risk [21]. Protective effects of weight-bearing exercise on postmenopausal bone loss may be lost with high training volumes and therefore more research may be required on these vulnerable athletes [24].
If triad knowledge is so poor amongst this group of athletes, they probably have inadequate nutritional knowledge to prevent inadvertent energy deficiency. Previous studies revealed that female endurance athletes often consume an incorrect macronutrient balance causing calorie deficiencies [25, 26]. One-third of athletes were categorised as having disordered eating by FAST scores—higher than the 14.7 % reported by Micklesfield et al. in Two Oceans athletes but similar to rates reported by Cobb et al. (25.5 %) amongst competitive distance runners [16, 23]. The majority of these athletes demonstrate a subclinical eating disorder with only 5.2 % meeting clinical eating disorder criteria, only marginally higher than general population rates (2–4 %) [27]. There were more athletes than expected with disordered eating behaviours in athletes at risk according to LEAF-Q scores confirming the interaction between disordered eating and triad risk. Since disordered eating is associated with low bone mineral density in competitive female distance runners without menstrual irregularity, screening of these athletes is advisable [23]. Dietary restraint is the disordered eating behaviour most closely associated with bone mineral loss and is therefore an important risk factor [28]. Nutritional trends amongst athletes have drastically changed in recent years following publicised low carbohydrate/high fat diets. Nearly 45 % of participants reported carbohydrate restriction. This is likely due to proposed benefits of improved body composition and performance without adequate input from a dietician thereby placing themselves at greater risk for calorie deficits. While low carbohydrate/high fat diets assist in weight loss, performance benefits for endurance athletes as well as the long-term health implications of such diets may be questioned. In addition to this, appetite often declines with intensive training and cannot be used as an indicator of energy requirements for endurance athletes [19]. Therefore, nutritional assessment and support may be beneficial for this group.
Weight control may be the motivation for or consequence of endurance exercise. Half of participants reported weight management as a motivation for training and 68 % expressed performance-related weight beliefs. Gibbs et al. demonstrated an association between a high drive for thinness amongst exercising women and energy deficiency, highlighting the need to screen athletes for energy and menstrual status if direct measurement is not feasible [29]. The high proportion demonstrating “weight consciousness” highlights the urgent need for screening of these athletes to detect compulsive attitudes towards exercise as well as eating psychopathology which is directly linked to the triad and stress fracture risk [22].
Self-reported injury rates were fairly high with 59.1 % of participants reporting injuries in the preceding year. This injury rate is similar to other studies which report injury rates as high as 79.3 %. Typical injuries occur in the lower extremities and increase with increased training distance, participation in longer distance events and training on hard surfaces (mainly concrete). These factors are all relevant to this group studied [30–32]. The majority of reported injuries were overuse injuries in keeping with other studies on athletes with high training loads [31, 33].
LEAF-Q scores classified 44.1 % of participants at risk for the triad with a correlation between faster race performance and higher triad risk. Faster race performance, higher training volume and intensity have a strong association with bone stress injury and triad risk [18].
With the above in mind, prevention is considered “the ultimate treatment strategy” [5, 17]. Screening and educational interventions are the most effective preventative strategy amongst endurance athletes [6, 7, 11]. Education should include healthcare professionals managing athlete injuries/illnesses, club coaches, family and friends of athletes [5]. Unfortunately, knowledge of the triad is also poor amongst health-care professionals with only 48 % of USA physicians, 43 % of physical therapists, 32 % of athletic trainers and 8 % of coaches able to name all three components [34]. It is unlikely that the situation is any different amongst healthcare professionals treating these participants therefore education about the triad should be extended to include these professionals. In addition, governing bodies should ensure effective implementation of educational programmes [5]. Athletics South Africa (ASA), the governing body of running in South Africa, should become activists for the education of female athletes. Pre-participation medical screening questionnaires are required by organisers before entry into certain events and cover mainly chronic illness and medical/injury history. It is recommended that triad screening questions be included in these questionnaires.
Strengths of the Study
All female athletes in the registration queue during sampling were requested to participate in the study to avoid selection bias from research assistants singling out “thin” athletes. South African runners as well as 42 international runners were asked to participate in order to get representation of the global female running community. Questions were simple and easy to understand.
Limitations
The study is limited to female participants in the 2014 South African Comrades Marathon. The data is self-reported and therefore dependent on the understanding of the questions and honesty of completion. The 45 incomplete questionnaires were excluded from analysis. It was assumed that these were incomplete due to time constraints. It may however be that some questions were too sensitive, especially those about eating behaviours. It is therefore possible that occurrence rates of participants with clinical or subclinical eating disorders are underreported.