Sies H, Jones DP. Oxidative stress. Amsterdam: Elsevier; 2007.
Book
Google Scholar
Gutowski M, Kowalczyk S. A study of free radical chemistry: their role and pathophysiological significance.
Acta Biochim Pol. 2013; 60(1):1–16.
CAS
PubMed
Google Scholar
Pryor WA. Free radicals. New York: McGraw-Hill; 1966.
Google Scholar
Xu X, Arriaga EA. Qualitative determination of superoxide release at both sides of the mitochondrial inner membrane by capillary electrophoretic analysis of the oxidation products of triphenylphosphonium hydroethidine.
Free Radic Biol Med. 2009; 46(7):905–13.
Article
PubMed Central
CAS
PubMed
Google Scholar
Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane.
J Biol Chem. 2004; 279(47):49064–73.
Article
CAS
PubMed
Google Scholar
St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain.
J Biol Chem. 2002; 277:44784–90.
Article
CAS
PubMed
Google Scholar
Saborido A, Naudi A, Portero-Otin M, Pamplona R, Megias A. Stanozolol treatment decreases the mitochondrial ROS generation and oxidative stress induced by acute exercise in rat skeletal muscle.
J Appl Physiol. 2011; 110:661–9.
Article
CAS
PubMed
Google Scholar
Gaitanos GC, Williams C, Boobis LH, Brooks S. Human muscle metabolism during intermittent maximal exercise.
J Appl Physiol. 1993; 75:712–19.
CAS
PubMed
Google Scholar
Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, Ferrara N. Adrenergic signaling and oxidative stress—a role for sirtuins?
Front Physiol. 2013; 4:324–324. doi:10.3389/fphys.2013.00324.
Article
PubMed Central
PubMed
Google Scholar
Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, Rhee SG. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-a.
J Biol Chem. 1998; 273:6297–302.
Article
CAS
PubMed
Google Scholar
Tao L, Gao E, Bryan NS, Qu Y, Liu HR, Hu A, et al. Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation.
Proc Natl Acad Sci U S A. 2004; 101:11471–6.
Article
PubMed Central
PubMed
Google Scholar
Yamawaki H, Haendeler J, Berk BC. Thioredoxin: a key regulator of cardiovascular homeostasis.
Circ Res. 2003; 93:1029–33.
Article
CAS
PubMed
Google Scholar
Lu SC. Regulation of hepatic glutathione synthesis: current concepts and controversies.
FASEB J. 1999; 13(10):1169–83.
CAS
PubMed
Google Scholar
Fu XJ, Peng YB, Hu YP, Shi YZ, Yao M, Zhang X. NADPH oxidase 1 and its derived reactive oxygen species mediated tissue injury and repair.
Oxidative Med Cell Longev. 2014; 2014:282854. doi:10.1155/2014/282854.
Article
Google Scholar
Halliwell B, Gutteridge J. Free radicals in biology and medicine. Oxford: Oxford University Press; 2007.
Google Scholar
Cherednichenko G, Zima AV, Feng W, Schaefer S, Blatter LA, Pessah IN. NADH oxidase activity of rat cardiac sarcoplasmic reticulum regulates calcium induced calcium release.
Circ Res. 2004; 94:478–86.
Article
CAS
PubMed
Google Scholar
Xia R, Webb JA, Gnall LL, Cutler K, Abramson JJ. Skeletal muscle sarcoplasmic reticulum contains a NADH-dependent oxidase that generates superoxide.
Am J Physiol Cell Physiol. 2003; 285:C215–21.
Article
CAS
PubMed
Google Scholar
Nathan C, Cunningham-Bussel A. Beyond oxidative stress—an immunologist’s guide to reactive oxygen species.
Nat Rev Immunol. 2013; 13(5):349–61.
Article
PubMed Central
CAS
PubMed
Google Scholar
Espinosa A, Leiva A, Pena M, Muller M, Debandi A, Hidalgo C, et al. Myotube depolarization generates reactive oxygen species through NAD(P)H oxidase: ROS-elicited Ca
2+
stimulates ERK, CREB, early genes.
J Cell Physiol. 2006; 209:379–88.
Article
CAS
PubMed
Google Scholar
Hidalgo C, Sanchez G, Barrientos G, Aracena-Parks P. A transverse tubule NADPH oxidase activity stimulates calcium release from isolated triads via ryanodine receptor type 1 S-glutathionylation.
J Biol Chem. 2006; 281:26473–82.
Article
CAS
PubMed
Google Scholar
Zhao X, Bey EA, Wientjes FB, Cathcart MK. Cytosolic phospholipase A2 (cPLA2) regulation of human monocyte NADPH oxidase activity: cPLA2 affects translocation but not phosphorylation of p67(phox) and p47(phox).
J Biol Chem. 2002; 277:25385–92.
Article
CAS
PubMed
Google Scholar
Gong MC, Arbogast S, Guo Z, Mathenia J, Su W, Reid MB. Calcium independent phospholipase A2 modulates cytosolic oxidant activity and contractile function in murine skeletal muscle cells.
J Appl Physiol. 2006; 100:399–405.
Article
CAS
PubMed
Google Scholar
McCord JM. Oxygen-derived free radicals in postischemic tissue injury.
N Engl J Med. 1985; 312:159–63.
Article
CAS
PubMed
Google Scholar
Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms.
Redox Biol. 2013; 1:244–57.
Article
PubMed Central
CAS
PubMed
Google Scholar
Radak Z, Asano K, Inoue M, Kizaki T, Oh-Ishi S, Suzuki K, et al. Superoxide dismutase derivative reduces oxidative damage in skeletal muscle of rats during exhaustive exercise.
J Appl Physiol. 1995; 79:129–35.
CAS
PubMed
Google Scholar
Sindler AL, Delp MD, Reyes R, Wu G, Muller-Delp JM. Effects of ageing and exercise training on eNOS uncoupling in skeletal muscle resistance arterioles.
J Physiol. 2009; 587:3885–97.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, et al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors.
Proc Natl Acad Sci U S A. 1998; 95:9220–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cosentino F, Luscher TF. Tetrahydrobiopterin and endothelial nitric oxide synthase activity.
Cardiovasc Res. 1999; 43:274–8.
Article
CAS
PubMed
Google Scholar
Bevers LM, Braam B, Post JA, van Zonneveld AJ, Rabelink TJ, Koomans HA, et al. Tetrahydrobiopterin, but not
l
-arginine, decreases NO synthase uncoupling in cells expressing high levels of endothelial NO synthase.
Hypertension. 2006; 47(1):87–94.
Article
CAS
PubMed
Google Scholar
Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease.
Physiol Rev. 2007; 87:315–424.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dikalov S. Cross talk between mitochondria and NADPH oxidases.
Free Radic Biol Med. 2011; 51:1289–301.
Article
PubMed Central
CAS
PubMed
Google Scholar
Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production.
Physiol Rev. 2008; 88:1243–76.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bartosz G. Reactive oxygen species: destroyers or messengers?
Biochem Pharmacol. 2009; 77:1303–15.
Article
CAS
PubMed
Google Scholar
Toledano MB, Planson A-G, Delaunay-Moisan A. Reining in H(2)O(2) for safe signaling.
Cell. 2010; 140:454–6.
Article
CAS
PubMed
Google Scholar
Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins.
Curr Opin Cell Biol. 2005; 17:183–9.
Article
CAS
PubMed
Google Scholar
Bae YS, Oh H, Rhee SG, Yoo YD. Regulation of reactive oxygen species generation in cell signaling.
Mol Cells. 2011; 32:491–509.
Article
PubMed Central
CAS
PubMed
Google Scholar
Davies MJ. The oxidative environment and protein damage.
Biochim Biophys Acta. 2005; 1703:93–109.
Article
CAS
PubMed
Google Scholar
Reid MB. Nitric oxide, reactive oxygen species, and skeletal muscle contraction.
Med Sci Sports Exerc. 2001; 33:371–6.
Article
CAS
PubMed
Google Scholar
Reid MB. Redox modulation of skeletal muscle contraction: what we know and what we don’t.
J Appl Physiol. 2001; 90:724–31.
Article
CAS
PubMed
Google Scholar
Reid MB, Khawli FA, Moody MR. Reactive oxygen in skeletal muscle. III. Contractility of unfatigued muscle.
J Appl Physiol. 1993; 75:1081–7.
CAS
PubMed
Google Scholar
Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance.
Am J Clin Nutr. 2008; 87:142–9.
CAS
PubMed
Google Scholar
Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans.
Proc Natl Acad Sci U S A. 2009; 106:8665–70.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yfanti C, Akerstrom T, Nielsen S, Nielsen A, Mounier R, Mortensen OH, et al. Antioxidant supplementation does not alter endurance training adaptation.
Med Sci Sports Exerc. 2010; 42:1388–95.
Article
CAS
PubMed
Google Scholar
Janssen-Heininger YM, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T, et al. Redox-based regulation of signal transduction: principles, pitfalls, and promises.
Free Radic Biol Med. 2008; 45:1–17.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hoshi T, Heinemann S. Regulation of cell function by methionine oxidation and reduction.
J Physiol. 2001; 531:1–11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Corcoran A, Cotter TG. Redox regulation of protein kinases.
FEBS J. 2013; 280:1944–65.
Article
CAS
PubMed
Google Scholar
Grune T, Reinheckel T, Davies KJ. Degradation of oxidized proteins in mammalian cells.
FASEB J. 1997; 11:526–34.
CAS
PubMed
Google Scholar
Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease.
Free Radic Biol Med. 2002; 32:790–6.
Article
CAS
PubMed
Google Scholar
Mylonas C, Kouretas D. Lipid peroxidation and tissue damage.
In Vivo. 1999; 1999(13):295–310.
Google Scholar
Szabo C, Ohshima H. DNA damage induced by peroxynitrite: subsequent biological effects.
Nitric Oxide. 1997; 1(5):373–85.
Article
CAS
PubMed
Google Scholar
Burney S, Caulfield JL, Niles JC, Wishnok JS, Tannenbaum SR. The chemistry of DNA damage from nitric oxide and peroxynitrite.
Mutat Res. 1998; 424:37–49.
Article
Google Scholar
Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease.
FASEB J. 2003; 17:1195–214.
Article
CAS
PubMed
Google Scholar
Di Meo S, Venditti P. Mitochondria in exercise-induced oxidative stress.
Biol Signals Recept. 2001; 10:125–40.
Article
PubMed
Google Scholar
Kavazis AN, Talbert EE, Smuder AJ, Hudson MB, Nelson WB, Powers SK. Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production.
Free Radic Biol Med. 2009; 46:842–50.
Article
PubMed Central
CAS
PubMed
Google Scholar
Herrero A, Barja G. ADP-regulation of mitochondrial free radical production is different with complex I- or complex II-linked substrates: implications for the exercise paradox and brain hypermetabolism.
J Bioenerg Biomembr. 1997; 29:241–9.
Article
CAS
PubMed
Google Scholar
Adhihetty PJ, Ljubicic V, Menzies KJ, Hood DA. Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli.
Am J Physiol Cell Physiol. 2005; 289:C994–1001.
Article
CAS
PubMed
Google Scholar
Kozlov AV, Szalay L, Umar F, Kropik K, Staniek K, Niedermuller H, et al. Skeletal muscles, heart, and lung are the main sources of oxygen radicals in old rats.
Biochem Biophys Acta. 2005; 1740:382–9.
CAS
PubMed
Google Scholar
Fisher-Wellman KH, Neufer PD. Linking mitochondrial bioenergetics to insulin resistance via redox biology.
Trends Endocrinol Metab. 2012; 23(3):142–53.
Article
PubMed Central
CAS
PubMed
Google Scholar
Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise.
Free Radic Biol Med. 2008; 2008(44):153–9.
Article
Google Scholar
Urso ML, Clarkson PM. Oxidative stress, exercise, and antioxidant supplementation.
Toxicology. 2003; 2003(189):41–54.
Article
Google Scholar
Nyberg M, Mortensen SP, Cabo H, Gomez-Cabrera MC, Vina J, Hellsten Y. Roles of sedentary aging and lifelong physical activity in exchange of glutathione across exercising human skeletal muscle.
Free Radic Biol Med. 2014; 73:166–73.
Article
CAS
PubMed
Google Scholar
Sen CK. Oxidants and antioxidants in exercise.
J Appl Physiol. 1995; 79(3):675–86.
CAS
PubMed
Google Scholar
Jackson MJ, Papa S, Bolanos J, Bruckdorfer R, Carlsen H, Elliott RM, et al. Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function.
Mol Aspects Med. 2002; 23:209–85.
Article
CAS
PubMed
Google Scholar
Vasilaki A, Mansouri A, Remmen H, van der Meulen JH, Larkin L, Richardson AG, et al. Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity.
Aging Cell. 2006; 5:109–17.
Article
CAS
PubMed
Google Scholar
Teixeira-Lemos E, Nunes S, Teixeira F, Reis F. Regular physical exercise training assists in preventing type 2 diabetes development: focus on its antioxidant and anti-inflammatory properties. Cardiovasc Diabetol. 2011;10:12. doi:10.1186/1475-2840-10-12. http://www.cardiab.com/content/10/1/12.
Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins.
Nature. 2009; 460:587–91.
Article
PubMed Central
CAS
PubMed
Google Scholar
Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance.
Annu Rev Pathol. 2010; 5:253–95.
Article
PubMed Central
CAS
PubMed
Google Scholar
Guarente L, Franklin H. Epstein lecture: sirtuins, aging, and medicine.
N Engl J Med. 2011; 364:2235–44.
Article
CAS
PubMed
Google Scholar
Navarro-Arevalo A, Canavate C, Sanchez-del-Pino MJ. Myocardial and skeletal muscle aging and changes in oxidative stress in relationship to rigorous exercise training.
Mech Ageing Dev. 1999; 108:207–17.
Article
CAS
PubMed
Google Scholar
Campbell PT, Gross MD, Potter JD, Schmitz KH, Duggan C, McTiernan A, et al. Effect of exercise on oxidative stress: a 12-month randomized, controlled trial.
Med Sci Sports Exerc. 2010; 42:1448–53.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nojima H, Watanabe H, Yamane K, Kitahara Y, Sekikawa K, Yamamoto H, et al. Effect of aerobic exercise training on oxidative stress in patients with type 2 diabetes mellitus.
Metabolism. 2008; 57:170–6.
Article
CAS
PubMed
Google Scholar
Elosua R, Molina L, Fito M, Arquer A, Sanchez-Quesada JL, Covas MI, et al. Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women.
Atherosclerosis. 2003; 167:327–34.
Article
CAS
PubMed
Google Scholar
Falone S, Mirabilio A, Pennelli A, Cacchio M, Di Baldassarre A, Gallina S, et al. Differential impact of acute bout of exercise on redox- and oxidative damage-related profiles between untrained subjects and amateur runners.
Physiol Res. 2010; 59:953–61.
CAS
PubMed
Google Scholar
Azizbeigi K, Azarbayiani MA, Peeri M, Agha-alinejad H, Stannard S. The effect of progressive resistance training on oxidative stress and antioxidant enzyme activity in erythrocytes in untrained men.
Int J Sport Nutr Exerc Metab. 2013; 23:230–8.
CAS
PubMed
Google Scholar
Metin G, Atukeren P, Alturfan AA, Gulyasar T, Kaya M, Gumustas MK. Lipid peroxidation, erythrocyte superoxide-dismutase activity and trace metals in young male footballers.
Yonsei Med J. 2003; 44:979–86.
Article
CAS
PubMed
Google Scholar
Blache D, Lussier-Cacan S, Gagnon J, Leon AS, Rao DC, Skinner JS, et al. Effect of exercise training on in vitro LDL oxidation and free radical-induced hemolysis: the HERITAGE Family Study.
Antioxid Redox Signal. 2007; 9:122–30.
Google Scholar
Masud MM, Fujimoto T, Miyake M, Watanuki S, Itoh M, Tashiro M. Redistribution of whole-body energy metabolism by exercise: a positron emission tomography study.
Ann Nucl Med. 2009; 23:81–8.
Article
PubMed
Google Scholar
Radak Z, Chung HY, Naito H, Takahashi R, Jung KJ, Kim HJ, et al. Age-associated increase in oxidative stress and nuclear factor kappaB activation are attenuated in rat liver by regular exercise.
FASEB J. 2004; 18:749–50.
CAS
PubMed
Google Scholar
Barde YA. Trophic factors and neuronal survival.
Neruon. 1989; 2:1525–34.
Article
CAS
Google Scholar
Stranahan AM, Lee K, Martin B, Maudsley S, Golden E, Cutler RG, et al. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice.
Hippocampus. 2009; 19:951–61.
Article
PubMed Central
CAS
PubMed
Google Scholar
van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus.
Nat Neurosci. 1999; 2:266–70.
Article
PubMed
Google Scholar
Mattson MP, Maudsley S, Martin B. A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1.
BDNF and Serotonin Ageing Res Rev. 2004; 3:445–64.
Article
CAS
Google Scholar
Mattson MP, Lovell MA, Furukawa K, Markesbery WR. Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca
2+
concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons.
J Neurochem. 1995; 65:1740–51.
Article
CAS
PubMed
Google Scholar
Radak Z, Marton O, Nagy E, Koltai E, Goto S. The complex role of physical exercise and reactive oxygen species on the brain.
J Sport Health Sci. 2013; 2:87–93.
Article
Google Scholar
Marques-Aleixo I, Oliveira PJ, Moreira PI, Magalhaes J, Ascensao A. Physical exercise as a possible strategy for brain protection: evidence from mitochondrial-mediated mechanisms.
Prog Neurobiol. 2012; 2012:149–62.
Article
Google Scholar
Texel SJ, Mattson MP. Impaired adaptive cellular responses to oxidative stress and the pathogenesis of Alzheimer’s disease.
Antioxid Redox Signal. 2011; 14(8):1519–34.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rothman SM, Mattson MP. Activity-dependent, stress-responsive BDNF signaling and the quest for optimal brain health and resilience throughout the lifespan.
Neuroscience. 2013; 239:228–40.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vasilaki A, McArdle F, Iwanejko LM, McArdle A. Adaptive responses of mouse skeletal muscle to contractile activity: the effect of age.
Mech Ageing Dev. 2006; 127:830–9.
Article
CAS
PubMed
Google Scholar
Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, et al. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice.
Cell. 2004; 119:285–98.
Article
CAS
PubMed
Google Scholar
Ji LL. Exercise-induced modulation of antioxidant defense.
Ann N Y Acad Sci. 2002; 959:82–92.
Article
CAS
PubMed
Google Scholar
Watson JD. Type 2 diabetes as a redox disease.
Lancet. 2014; 383:841–3.
Article
PubMed
Google Scholar
Drose S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain.
Adv Exp Med Biol. 2012; 748:145–69.
Article
PubMed
Google Scholar
Brown DI, Griendling KK. Nox proteins in signal transduction.
Free Radic Biol Med. 2009; 47:1239–53.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ron D, Harding HP. Protein-folding homeostasis in the endoplasmic reticulum and nutritional regulation.
Cold Spring Harb Perspect Biol. 2012; 4:a013177. doi:10.1101/cshperspect.a013177.
Article
PubMed Central
PubMed
Google Scholar