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Abstract

As type 2 diabetes remains a leading cause of morbidity and mortality, identifying the most appropriate preventive
treatment early in the development of disease is an important public health matter. In general, lifestyle interventions
incorporating exercise and weight loss via caloric restriction improve cardiometabolic risk by impacting several key
markers of insulin sensitivity and glucose homeostasis. However, variations in the effects of specific types of exercise
interventions on these markers have led to conflicting results surrounding the optimal amount, intensity, and mode
of exercise for optimal effects. Moreover, the addition of weight loss via caloric restriction to exercise interventions
appears to differentially impact changes in body composition, metabolism, and insulin sensitivity compared to
exercise alone. Determining the optimal amount, intensity, and mode of exercise having the most beneficial impact
on glycemic status is both: (1) clinically important to provide guidelines for appropriate exercise prescription; and (2)
physiologically important to understand the pathways by which exercise—with and without weight loss—impacts
glycemic status to enhance precision lifestyle medicine. Thus, the purposes of this narrative review are to: (1) sum-
marize findings from the three Studies of a Targeted Risk Reduction Intervention through Defined Exercise (STRRIDE)
randomized trials regarding the differential effects of exercise amount, intensity, and mode on insulin action and
glucose homeostasis markers; and (2) compare the STRRIDE findings to other published dose-response exercise trials
in order to piece together the various physiologic pathways by which specific exercise interventions—with or without
weight loss—impact glycemic status.

Keywords: Type 2 diabetes mellitus, Prediabetes, Cardiometabolic health, Aerobic exercise, Resistance exercise,
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Key Points insulin sensitivity and glucose homeostasis. However,
variations in the effects of specific types of exercise
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glucose homeostasis; (2) when matched for amount
of energy expenditure relative to body weight, mod-
erate intensity aerobic exercise elicits greater benefits
for IVGTT-derived skeletal muscle insulin sensitivity
and early phase pancreatic 5-cell function, as well as
OGTT-derived glucose tolerance; and (3) compared
to a more moderate-intensity prescription, higher-
intensity exercise appears to have a more potent
effect on peripheral insulin sensitivity assessed dur-
ing hyperinsulinemic—euglycemic clamps.

3. Further research encompassing rigorously designed
dose—response exercise trials is needed to help deter-
mine the optimal lifestyle intervention prescriptions
for prevention and treatment of type 2 diabetes.

Introduction

As of 2017, type 2 diabetes impacts an estimated 451 mil-
lion adults worldwide, with approximately 79% of those
impacted living in low- and middle-income countries [1].
In the USA, type 2 diabetes is prevalent among an esti-
mated 34.2 million individuals [2] with disproportion-
ate effects on sedentary individuals with overweight or
obesity [3, 4]. Type 2 diabetes arises from multiple dis-
turbances in glucose homeostasis, including: (1) impaired
insulin secretion; (2) insulin resistance, where cells
throughout the body have an impaired ability to respond
to insulin (i.e., decreased sensitivity); and (3) abnormali-
ties in splanchnic glucose uptake [5, 6]. Moreover, after
these disturbances manifest as impaired glucose toler-
ance or impaired fasting glucose—a prediabetic state—
glucose homeostasis becomes more challenging to regain
[7, 8]. Therefore, identifying the most appropriate pre-
ventive treatment—such as the lifestyle interventions
exercise and diet—is an important public health issue.

In general, weight loss and exercise improve cardio-
metabolic risk profiles by impacting several markers of
insulin sensitivity and glucose homeostasis. However,
variations in the effects of specific types of exercise inter-
ventions on these markers have led to conflicting results
surrounding the optimal amount and intensity of exercise
for optimal effects across the cardiometabolic disease
spectrum [9-17]. Furthermore, exercise interventions
including weight loss via caloric restriction differentially
effect changes in body composition, metabolism, and
insulin sensitivity compared to interventions employing
exercise alone [18-20]. Thus, determining the optimal
amount, intensity, and mode of exercise training having
the greatest impact on glycemic status is both: (1) clini-
cally important to provide guidelines for appropriate
exercise prescription; and (2) physiologically important
to understand the pathways by which exercise—with and
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without weight loss—impacts glycemic status to enhance
our ability to personalize these exercise prescriptions.

To delve deeper into the patterns of exercise—dose
response on glycemic control, we acknowledge the com-
plexity of disentangling the different mechanisms of
action—many of which are largely unknown—among
varijous fasting and dynamic markers of glucose control.
In terms of fasting measures, both the homeostatic model
assessment of insulin resistance (HOMA-IR) and fast-
ing glucose are reflective of hepatic insulin sensitivity [6].
When the liver becomes insulin resistant, impairments
arise in both glycogen synthesis and suppression of glu-
cose production, as well as increases in lipogenesis and
inflammatory protein synthesis [21]. On the other hand,
the Lipoprotein Insulin Resistance Index (LP-IR)—a com-
posite marker of six lipoprotein subclass and size param-
eters—appears to reflect adipose tissue insulin sensitivity,
where the presence of high insulin levels impairs the sup-
pression of lipolysis [22]. Suppressed lipolysis leads to
elevated levels of free fatty acids, which can impair muscle
signaling, promote hepatic gluconeogenesis, and impair
glucose-stimulated insulin response [23-28].

The dynamic intravenous glucose tolerance test
(IVGTT)-derived measures of acute insulin response to
glucose (AIRg) and insulin sensitivity index (Si) represent
pancreatic and skeletal muscle insulin sensitivity, respec-
tively. In the early stages of insulin resistance, pancreatic
f3-cells compensate for hyperglycemia by oversecreting
insulin. As the progression to diabetes continues, [3-cell
compensation is unable to keep up with the metabolic
demands and fails to secrete sufficient insulin. When
skeletal muscles become insulin resistant, impairments
occur in insulin-stimulated glucose transport and glu-
cose phosphorylation as well as reductions in glucose
oxidation and glycogen synthesis. Skeletal muscle insulin
resistance is also related to increased intramyocellular fat
content and fatty acid metabolites, which may be attrib-
uted to defects in skeletal muscle mitochondrial oxida-
tive phosphorylation [29]. Disposition index (DI)—the
product of AIRg and Si—is an indirect marker of whether
the level of insulin secretion is appropriate for the level
of insulin resistance; therefore, DI provides an integra-
tive assessment of early phase f3-cell responses. In addi-
tion, the hyperinsulinemic—euglycemic clamp-derived
measure of whole-body insulin-stimulated glucose uti-
lization rate also reflects hepatic and skeletal muscle
function as a marker of peripheral insulin sensitivity [30,
31]. Finally, oral glucose tolerance test (OGTT)-derived
measures of insulin sensitivity—including Matsuda
index, glucose area under the curve (AUC), and insulin
AUC—are considered to reflect even more complex, inte-
grated physiology mechanisms, encompassing not only
hepatic and muscle insulin sensitivity, but also the effects
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of postprandially released gut hormones (e.g., the incre-
tins glucose-dependent insulinotropic polypeptide and
glucagon-like peptide-1), neurotransmitters, and gastric
emptying [32, 33].

The three Studies of a Targeted Risk Reduction
Intervention through Defined Exercise (STRRIDE)
randomized trials were designed to understand the
dose-response and mode specificity effects of exercise
on reductions in cardiometabolic risk in participants
with dyslipidemia (STRRIDE I and STRRIDE AT/RT)
and prediabetes (STRRIDE-PD). Within each STRRIDE
trial, intervention groups were matched on one of the key
exercise parameters—amount, intensity, or mode—while
varying the other parameters. In addition, STRRIDE-PD
included an intervention group similar to the lifestyle
arm of the Diabetes Prevention Program, which com-
bined aerobic exercise with diet and weight loss. Collec-
tively, the STRRIDE trials provide a unique opportunity
to assess the effects of ten different exercise interven-
tions on markers of cardiometabolic health. In this nar-
rative review, we will summarize the findings from the
STRRIDE trials surrounding the differential effects of
amount, intensity, and mode of exercise on measures
of insulin sensitivity and glucose homeostasis. Further,
to piece together the various physiological pathways by
which specific exercise interventions—with or without
weight loss—impact glycemic status, we will compare
STRRIDE findings to other published dose-response
exercise trials with main outcomes related to glycemic
control.

Table 1 Exercise intervention groups in the STRRIDE trials
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Background and Methods

The STRRIDE Randomized Clinical Trials

A detailed description of the three STRRIDE clinical
trials has been presented elsewhere [34-36]. A total
of 475 participants who completed the three trials and
had pre- and post-intervention data available for mark-
ers of insulin sensitivity and glucose homeostasis were
included in this narrative review. Participants with dys-
lipidemia [STRRIDE I (n=237) and STRRIDE AT/RT
(n=125)] or prediabetes [STRRIDE-PD (n=150)] were
randomized to either control group or one of ten inter-
ventions (Table 1):

STRRIDE | (8-Month Intervention Duration; Tables 1 and 2)

1. High-amount/vigorous-intensity —aerobic training:
23 kcal of exercise expenditure/kg of body weight/
week (KKW) at 65—80% peak VO,

2. Low-amount/vigorous-intensity aerobic training: 14
KKW at 65-80% peak VO,

3. Low-amount/moderate-intensity aerobic training: 14
KKW at 40—-55% peak VO,

STRRIDE AT/RT (8-Month Intervention Duration; Tables 1
and 3)

4. Resistance training only: 3 sets/day, 8—12 repetitions/
set, of 8 exercises, 3 days/week

Study and intervention group n Exercise prescription
STRRIDE |
High Amount/Vigorous Intensity 64 23 KKW 65-80% peak VO,
Low Amount/Vigorous Intensity 58 14 KKW 65-80% peak VO,
Low Amount/Moderate Intensity 57 14 KKW 40-55% peak VO,
STRRIDE AT/RT
Aerobic Training (Low Amount/Vigorous 47 14 KKW 65-80% peak VO,
Intensity)
Resistance Training 51 3 days/week, 3 sets/day, 8-12 reps of 8 exercises
Aerobic + Resistance Training 44 14 KKW at 65-80% peak VO, + 3 days/week, 3 sets/day, 8-12

reps of 8 exercises
STRRIDE-PD
High Amount/Vigorous Intensity 38 16 KKW 65-80% VO, reserve
High Amount/Moderate Intensity 40 16 KKW 40-55% VO, reserve
Low Amount/Moderate Intensity 35 10 KKW 40-55% VO, reserve
Clinical Lifestyle Intervention 37 10 KKW at 40-55% VO, reserve + caloric restriction to reduce

body weight by 7%

KKW, kcal exercise energy expenditure/kilogram of body weight/week; 23 KKW, calorically equivalent of walking/jogging approximately 20 miles/week for a 90 kg
person; 14 KKW, calorically equivalent of walking/jogging approximately 12 miles/week for a 90 kg person; 16 KKW, calorically equivalent of walking/jogging
approximately 13.8 miles/week for a 90 kg person; 10 KKW, calorically equivalent of walking/jogging approximately 8.6 miles/week for a 90 kg person
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5. Aerobic training only (low amount/vigorous inten-
sity): 14 KKW at 75% peak VO,

6. Aerobic plus resistance training: full combination
of the low-amount/vigorous-intensity aerobic and
resistance training prescriptions

STRRIDE-PD (6-Month Intervention Duration; Tables 1 and 4)

7. Low-amount/moderate-intensity aerobic training:
10 KKW at 50% VO, reserve

8. High-amount/moderate-intensity aerobic training:
16 KKW at 50% VO, reserve

9. High-amount/vigorous-intensity aerobic training:
16 KKW at 75% VO, reserve

10. Clinical lifestyle intervention: low-amount/mod-
erate-intensity aerobic training prescription plus
a calorie restricted diet designed to reduce body
weight by 7%

Insulin sensitivity for STRRIDE I and AT/RT was
determined using a three-hour IVGTT [37]. Through
an intravenous catheter placed in the antecubital space,
glucose (50% at 0.3 g/kg body mass) was injected at time
zero and insulin (0.025 U/kg body mass) was injected at
minute 20. Twenty-nine blood samples (at minutes 0, 2,
3,45 6,8 10, 12, 14, 16, 19, 22, 23, 24, 25, 27, 30, 40,
50, 60, 70, 80, 90, 100, 120, 140, 160, 180) were obtained,
centrifuged, and stored at — 80 °C. Insulin was measured
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by immunoassay (Access Immunoassay System, Beck-
man Coulter, Fullerton, CA), and glucose with an oxida-
tion reaction (YSI 2300, Yellow Springs, OH). Si, AIRg
(calculated as area under the insulin curve during the
first 10 min; a measure of insulin secretion), and DI
(DI=AIRg X Si; a measure of S-cell function) were cal-
culated using Bergman’s minimal model [37]. The IVGTT
was performed after an overnight fast both at baseline
and at the end of exercise training (16—24 h after the last
exercise session).

Insulin sensitivity for STRRIDE-PD was determined
using a two-hour OGTT. Participants drank a 75 g glu-
cose drink with blood samples taken at 0, 30, 60, 90, and
120 min. Glucose was measured with a Beckman Coulter
DxC600 clinical analyzer (Brea, CA, USA). Insulin was
measured by electrochemiluminescent plate assay (Meso
Scale Discovery, Gaithersburg, MD, USA). Glucose and
insulin AUCs were calculated by the trapezoid method.
Matsuda index was calculated as described in Matsuda
and Defronzo [38]. The OGTT was performed after a
10-h fast both at baseline and at the end of exercise train-
ing (16—24 h after the last exercise session).

For all three STRRIDE studies, fasted plasma samples
were analyzed on 400 MHz nuclear magnetic resonance
profilers at LipoScience, now LabCorp (Morrisville,
NC, USA), as previously described [39]. The lipoprotein
parameters as well as the branched chain amino acids
were calculated by retrospectively analyzing digitally
stored spectra using the newly developed LP4 algorithm

Table 3 Baseline and change scores for fasting and IVGTT parameters in STRRIDE AT/RT by group

Aerobic training

Resistance training

Aerobic + resistance training

Baseline Change p Baseline Change p Baseline Change p
n 42 43 40
Fasting Parameters
Glucose (mmol/L) 53(0.7) —0.1(06) NS 5.5(0.6) —0.03 (0.5) NS 5.1(0.5) 0.01 (0.5) NS
Insulin (pmol/L) 56.4 (33.6) —10.2(18.0) Frx 51.6(22.8) —24(282) NS 52.8(27.0) —9.6(264) *
HOMA-IR 23(1.5) —0.5(09) xx 2.1(1.1) —0.1(1.3) NS 20(1.1) —04(1.1) *
LP-IR? 54.0 (25.5) —48(17.2) NS 48.7 (24.4) —1.7(14.0) NS 54.3(20.4) —10.1(16.8) Hxx
DRI 459 (19.2) —-29(119) NS 40.8(18.2) —08(122) NS 46.0 (16.3) —62(11.0) xxx
n 27 38 23
IVGTT parameters
DI 1813 (1341) —230(1047) NS 1794 (1204) —114(1107) NS 1465 (1192) 1069 (1696) **
AlRg (mU/L/min) 471 (352) — 103 (186) xx 495 (322) —35(224) NS 510 (449) — 80 (248) NS
Si (mU/L/min) 446 (3.1) 020 (2.8) NS 4.08(1.9) —0.21(.0) NS 4.08(1.9) 3.06 (3.4) Fxx

Data presented as means (SD)

AlIRg, acute insulin response to intravenous glucose; DI, disposition index; DRI, Diabetes Risk Index; HOMA, homeostatic model assessment [(fasting glucose x fasting
insulin)/22.5]; IVGTT, intravenous glucose tolerance test; LP-IR, Lipoprotein Insulin Resistance Index; NS, not significant; Si, insulin sensitivity index

*p<0.05; **p<0.01; ***p <0.001

2 LP-IR and DRI sample sizes are: aerobic training (n = 46); resistance training (n = 50); aerobic + resistance training (n =43)
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[40-43]. As previously described [44], LP-IR is a com-
posite index calculated from the results of the following
six lipoprotein parameters: large very low-density lipo-
protein, small low-density lipoprotein, and high-density
lipoprotein subclass concentrations and very low-density
lipoprotein, low-density lipoprotein, and high-density
lipoprotein sizes. LP-IR scores range from 0 (most insu-
lin sensitive) to 100 (most insulin resistant). The Diabetes
Risk Index is a multi-marker index composed of LP-IR,
valine, and leucine. As described previously [45], the Dia-
betes Risk Index was developed using logistic regression
and prospective type 2 diabetes data from the Multi-Eth-
nic Study of Atherosclerosis (MESA) [46]. Diabetes Risk
Index scores range from 1 to 100, the latter representing
those at greatest risk for type 2 diabetes. Further among
fasting samples, HOMA-IR was calculated using fast-
ing glucose multiplied by fasting insulin and divided by
22.5 as an indicator of insulin sensitivity during fasting
conditions.

Literature Search Procedures

The literature was reviewed to identify studies investigat-
ing the effects of exercise amount, intensity, and mode on
insulin sensitivity and glucose homeostasis. The online
database PubMed (MEDLINE) was searched between
May 2020 and September 2021. We utilized a variety
of MeSH terms and text words to narrow our search by
population/problem (e.g., prediabetes, cardiovascular
diseases), intervention (e.g., exercise training, lifestyle
intervention), outcomes/measures (e.g., blood glucose,
insulin sensitivity, glucose tolerance), and sources (e.g.,
controlled clinical trial). Study inclusion was limited to
randomized controlled trials only.

Aerobic Exercise Amount and Intensity Effects
STRRIDE Findings

Among traditional fasting makers of glycemic status,
all exercise training groups in STRRIDE I significantly
improved fasting insulin (all exercise groups: — 7.8+ 19.8 to
— 15.0£33.6 pmol/L, p<0.01) and HOMA-IR (all exercise
groups: — 0.2+0.4 to — 0.3+0.7, p<0.01) (Table 2). How-
ever, no STRRIDE I exercise training groups significantly
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improved fasting glucose. Within the spectroscopically
derived markers of insulin resistance and type 2 diabetes
risk assessed in STRRIDE I, all three exercise groups sig-
nificantly improved LP-IR (all exercise groups: — 5.2+15.9
to — 9.3£15.5, p<0.05). Both the low-amount/moderate-
intensity (— 4.7 +14.4) and low-amount/vigorous-intensity
(— 2.6+8.9) groups improved Diabetes Risk Index; how-
ever, these changes were only statistically significant for
the low-amount/moderate-intensity group (p<0.05). In
STRRIDE-PD, both high amount exercise groups had simi-
lar magnitudes of change in LP-IR; however, only the high-
amount/vigorous-intensity group (— 4.4+8.2, p<0.01)
achieved statistical significance. The high-amount/vigor-
ous-intensity group (— 2.8+8.2, p<0.05) experienced a sig-
nificant decrease in Diabetes Risk Index, with no significant
effect seen in the moderate-intensity groups (Table 4).
Among IVGTT parameters, both moderate- and vig-
orous-intensity groups in STRRIDE I improved meas-
ures of insulin sensitivity and f-cell function (Table 2).
Kahn and colleagues [47-50] have derived percentiles
to assess the relationship between Si, AIRg, and DI, with
significant diabetes risk being modified only by changes
across the isobar (DI) lines. A lower percentile represents
greater impairment in S-cell function and increased dia-
betes risk. Figure 1 Panel A shows the change in DI, Si,
and AIRg for the STRRIDE I intervention groups. Com-
pared to normal S-cell functioning individuals with a
DI ranging from 2000 to 2800 [15, 51-53], STRRIDE
I participants had a lower average baseline measure of
pancreatic 5-cell function, with a mean DI across inter-
vention groups being approximately 1400. Following the
intervention, DI significantly improved within the low-
amount/moderate-intensity (742.1 +1680.0, p <0.01) and
high-amount/vigorous-intensity groups (254.54688.2,
p<0.01). All three exercise training groups experienced
a significant improvement in Si (all exercise groups:
0.8+1.8to 1.7£2.5 mU/L/min, p<0.001). Only the high-
amount/vigorous-intensity group significantly improved
AIRg (-76.6 £217.6 pmol/l, p<0.01). The magnitude of
improvement in DI and Si among the low-amount/mod-
erate-intensity group was greater than that for the same
amount of exercise at a vigorous intensity (p <0.05).

(See figure on next page.)

Fig. 1 Disposition Index (DI=Si x AIRg) percentiles for STRRIDE | (panel @) and STRRIDE AT/RT (panel b). Type 2 diabetes risk is significantly
modified only by changes across the isobar (DI) lines, with a greater percentile being representative of greater insulin sensitivity and lesser
diabetes risk. Pre-intervention data points are represented by open symbols. Post-intervention data points are represented by closed symbols.
Arrows represent the direction of change in DI following exercise training by intervention group. In panel a, diamonds =inactive control group;
circles =low-amount/moderate-intensity group; triangles = low-amount/vigorous-intensity group; and squares = high-amount/vigorous-intensity
group. In panel b, circles = aerobic training group; squares =resistance training group; and triangles = aerobic plus resistance training group.
Dl=disposition index; Si=insulin sensitivity index; AIRg=acute insulin response to glucose
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Among OGTT parameters in STRRIDE-PD, all
exercise groups significantly improved insulin AUC
(— 166.0+330.0 to — 264.0+452.0 pmol/L x 2 h,
p<0.01) and Matsuda index (1.1£1.7 to 1.4+24,
p<0.01). Of the exercise without diet groups, only the
high-amount/moderate-intensity =~ group significantly
improved glucose AUC (— 73.0£123.0 mmol/L x 12
0 min, p<0.001), exceeding results from the group per-
forming vigorous-intensity exercise of the same amount
(Table 4). Consistent with STRRIDE I, these findings fur-
ther support moderate—rather than vigorous—intensity
exercise that has greater effects on measures of insulin
sensitivity and glucose homeostasis.

Previous Findings in the Literature

Few randomized controlled trials have rigorously com-
pared amount and intensity effects on insulin action and
glucose homeostasis measures; we subsequently discuss
the major findings from four randomized controlled tri-
als. Highlighted results from these studies are presented
in Table 5.

Ross and colleagues investigated the separate effects of
exercise amount and intensity on changes in abdominal
obesity and OGTT-derived two-hour glucose concentra-
tions [54]. Rather than abnormal glucose homeostasis
parameters, participants were initially recruited based on
abdominal obesity criteria. Three hundred abdominally
obese participants were randomized to either no exercise
control or to one of three exercise groups performing five
sessions per week for 24 weeks of (1) low-amount/low
[moderate]-intensity exercise (180 and 300 kcal/session
for women and men, respectively, at 50% of maximum
oxygen consumption [peak VO,]); (2) high-amount/low
[moderate]-intensity exercise (360 and 600 kcal/session
for women and men, respectively, at 50% of peak VO,);
or (3) high-amount/high [vigorous]-intensity exercise
(360 and 600 kcal/session for women and men, respec-
tively, at 75% of peak VO,). Of note, as indicated above,
for this review, we define exercising at 50% peak VO,
to represent moderate intensity, rather than the study-
specified “low” intensity. Primary outcome variables
included waist circumference and two-hour glucose
level, measured in response to a two-hour, 75 g OGTT
at baseline and between 36 and 48 h after the last exer-
cise session at 16 and 24 weeks. Compared to control,
reductions in two-hour glucose level were greater in the
high-amount/high [vigorous]-intensity group. While
the authors concluded that high-amount/high-intensity
exercise reduces two-hour glucose levels greater than
high-amount/low [moderate]-intensity and low-amount/
low [moderate]-intensity, significant group differences
were not present. Compared to control, both the high-
amount/low [moderate]-intensity and high-amount/high
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[vigorous]-intensity groups significantly improved Mat-
suda index and insulin AUC.

While holding absolute exercise volume—not rela-
tive to body weight—constant, DiPietro and colleagues
studied the relative benefits of a moderate- versus high-
intensity 9-month exercise training program on insulin
sensitivity [10]. Twenty-five sedentary, older women were
randomized to 4 days per week of either (1) high-inten-
sity aerobic exercise (300 kcal/session at 80% of peak
VO,); (2) moderate-intensity aerobic exercise (300 kcal/
session at 65% peak VO,); or (3) low-intensity placebo
control (45 min/session at 50% peak VO,). Whole-body
insulin-stimulated glucose utilization was determined
using a two-step euglycemic—hyperinsulinemic clamp,
following methods described by DeFronzo et al. [30], at
baseline and at 9 months, ~72 h following the last train-
ing session. Following a resting period, regular human
insulin was infused as a primed continuous (120-min)
low-dose infusion (10 mU m~2 min™") followed by a con-
tinuous (120-min) higher dose infusion (hyperglycemic;
40 mU m~2 min™') during which glucose (20% dextrose)
infusion was adjusted at a rate to maintain plasma glu-
cose at~100 mg/dL during hyperinsulinemia. Follow-
ing the intervention, no groups experienced a significant
change in fasting plasma glucose, insulin, glycerol, or
free fatty acid concentrations. Seventy-two hours after
the last session of exercise training, the high-intensity
group experienced a significant long-term training-
related improvement in the rate of whole-body insulin-
stimulated glucose utilization at the higher insulin dose.
The high-intensity group also experienced significant
improvements in insulin-stimulated suppression of adi-
pose tissue lipolysis to the low dose of insulin as well as
improvements in glucose uptake when normalized for
the level of circulating insulin during the final 30 min
of the clamp. These improvements appeared to follow a
dose-response trend with regard to intensity; a greater
magnitude of improvement was found among those
in the high-intensity group compared to moderate- or
low-intensity control. Further, these improvements were
observed without improvements in body composition
and peak VO,.

Adding to work from DiPietro and colleagues [10],
Coker and colleagues examined the effects of moder-
ate- versus high-intensity exercise training on insu-
lin-stimulated glucose disposal, holding constant
prescribed exercise volume [12]. Twenty-one over-
weight, older adults were randomized to perform aero-
bic exercise training 4 to 5 days per week for 12 weeks
at either high-intensity exercise training (1000 kcal/
week at 75% VO,,,,); moderate-intensity (1000 kcal/
week at 50% VO,,,,,); or to non-exercise control group.
Insulin sensitivity was measured using a 120-min
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hyperinsulinemic—euglycemic clamp at baseline and
post-intervention. Post-intervention clamps were com-
pleted 3 days after the last exercise session. Following
the 16-week intervention, in the absence of weight loss,
the moderate-intensity and control groups did not expe-
rience changes in insulin-stimulated glucose disposal,
non-oxidative glucose metabolism, or glucose oxidation.
On the other hand, the high-intensity group significantly
improved insulin-stimulated glucose disposal, which was
entirely reliant on an increase in non-oxidative glucose
metabolism, seemingly reflecting the influence of muscle
glycogen content on insulin sensitivity.

In a short-term exercise intervention, Malin and col-
leagues investigated the effect of amount-matched
intensity exercise on S-cell function, adjusting for gut
hormones and skeletal muscle insulin sensitivity, among
individuals with prediabetes [55]. Thirty-one participants
were randomized to 12 work-matched sessions over
a 13-day period of either moderate-intensity continu-
ous exercise [60 min/day at 70% peak heart rate (HR)]
or high-intensity interval exercise (60 min/day alternat-
ing 3-min intervals at 90% peak HR followed by 50%
peak HR). Early (0-30 min) and total-phase (0—120 min)
glucose tolerance and pancreatic -cell function were
measured using a 75 g two-hour OGTT following an
overnight fast at baseline and post-intervention. Follow-
ing exercise training, both groups significantly improved
early and total-phase glucose AUC, insulin AUC, and
skeletal muscle DI, as well as skeletal muscle insulin sen-
sitivity derived from the oral minimal model. Pearson’s
correlation revealed a significant relationship between
improvements in glucose AUC with increases in early
and total-phase skeletal muscle DI. Only continuous
moderate-intensity exercise training raised fasting glu-
cose-dependent insulinotropic polypeptide, whereas
both exercise intervention groups increased early phase
glucagon-like polypeptide-1 during the OGTT. Overall,
the authors concluded that in adults with prediabetes,
B-cell function improved independent of exercise inten-
sity, when adjusting for skeletal muscle insulin sensitivity.
These findings suggest that exercise promotes a unique
compensatory mechanism between skeletal muscle, gut,
and pancreas to reduce ambient glucose concentration.

Summary

Although discerning distinct dose—response effects
of aerobic exercise across diverse markers of glycemic
status remains difficult, some studies identified differ-
ential amount and intensity effects for certain mark-
ers. For example in STRRIDE I, both low-amount/
moderate-intensity and high-amount/vigorous-intensity
exercise elicited significant improvements in DI, with
low-amount/moderate-intensity having the greatest
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effect—driven by substantial improvements in skeletal
muscle insulin sensitivity (Si) and almost no compen-
satory decrease in first-phase insulin secretion (AIRg).
Interestingly for the Si component, twice the amount
of vigorous intensity exercise was necessary to elicit
the same magnitude of response as the low-amount/
moderate-intensity group. The beneficial effects of mod-
erate-intensity exercise were also observed in STRRIDE-
PD; when matched for amount relative to body weight,
moderate intensity had a significantly superior effect on
glucose tolerance (glucose AUC) compared to vigorous
intensity exercise. Paradoxically, compared to a more
moderate-intensity prescription, higher-intensity exer-
cise appears to have a more potent effect on peripheral
insulin sensitivity assessed during hyperinsulinemic—
euglycemic clamps.

Notably, for three studies in this narrative review, aero-
bic exercise—regardless of amount and intensity—sig-
nificantly improved a variety of insulin sensitivity and
glucose homeostasis markers. In the two-week aerobic
intervention study conducted by Malin et al., both exer-
cise groups significantly improved OGTT-derived mark-
ers insulin AUC, glucose AUC, skeletal muscle insulin
sensitivity, and skeletal muscle DI. After 6 months of
aerobic training in STRRIDE-PD, all exercise groups sig-
nificantly improved the OGTT-derived markers insulin
AUC and Matsuda index. Following 8 months of aero-
bic training in STRRIDE I, all exercise groups signifi-
cantly improved the fasting markers LP-IR, insulin, and
HOMA-IR, and the IVGT T-derived marker Si.

Overall, aerobic exercise-mediated improvements
occur through increased expression and activation of
signaling proteins in the skeletal muscles—such as glu-
cose transporter type 4 (GLUT4) translocation mediated
by adenosine monophosphate-activated protein kinase
(AMPK) and its downstream targets—involved in the
regulation of glucose uptake and metabolism as well as
increases in lipid turnover and oxidation [56, 57]. In addi-
tion, to help support the increased oxygen demands in
the exercising muscles, aerobic training increases capil-
lary density and promotes mitochondrial biogenesis [58].
Expanding the mitochondrial network improves skeletal
muscle capacity for oxygen consumption and production
of adenosine triphosphate (ATP) [58]. Aerobic exercise
also decreases basal glucose production and increases
suppression of liver glucose output [59].

Moderate- and vigorous-intensity aerobic exercises
are well known to primarily rely on different sources of
energy. Moderate-intensity exercise reflects a greater per-
centage of fat oxidation compared to vigorous intensity.
Plausibly, the moderate-intensity-induced improvements
in fat oxidation lead to a reduction in skeletal muscle,
liver, and pancreas lipotoxicity, thus improving insulin
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sensitivity [15]. Conversely, vigorous-intensity exercise
relies on non-oxidative metabolism to a greater degree
than moderate-intensity exercise [60]. Therefore, the vig-
orous intensity-induced improvements in insulin-stim-
ulated glucose disposal rate are likely explained by the
greater depletion of muscle glycogen content necessitat-
ing a compensatory increase in muscle glycogen synthe-
sis [12].

Exercise Mode Effects

STRRIDE Findings

Among traditional fasting measures of glycemic status in
STRRIDE AT/RT, aerobic training—alone and in combi-
nation with resistance training—significantly improved
both fasting insulin (aerobic only: — 10.2+18.0 pmol/L,
p<0.001; aerobic plus resistance: — 9.6+26.4 pmol/L,
p<0.05) and HOMA-IR (aerobic only: — 0.5+£0.9,
p<0.01; aerobic plus resistance: — 0.441.1, p<0.05)
(Table 3). However, resistance training alone did not sig-
nificantly improve any fasting measures. Further, none of
the three exercise training groups significantly improved
fasting glucose. For the novel markers of insulin resist-
ance and type 2 diabetes risk, only the aerobic plus resist-
ance training group resulted in a significant and robust
decrease in LP-IR (— 10.14+16.8, p<0.001), which was
significantly different from the resistance training only
group. Similarly, only aerobic plus resistance training
induced a significant beneficial change in Diabetes Risk
Index (— 6.2 11.0, p<0.001) (Table 3).

Compared to STRRIDE I participants, baseline pancre-
atic S-cell function among STRRIDE AT/RT participants
was greater, with an average DI of ~ 1700. Figure 1 Panel
B shows the change in DI, Si, and AIRg for the STRRIDE
AT/RT intervention groups. Among these IVGTT
parameters, the aerobic plus resistance training group
had robust, synergistic changes in DI (1069.0+1696.0,
»<0.01) and Si (3.1£3.4 mU/L/min, p<0.001) com-
pared to aerobic and resistance training alone (Table 3).
Neither aerobic nor resistance training alone resulted in
significant improvements in these measures. Although all
three exercise training groups reduced AIRg, this change
was only significant in the aerobic training only group
(— 103.04+186.0 mU/L/min, p<0.01).

Previous Findings in the Literature

Tremendous consistency exists in the literature regard-
ing mode effects of exercise on insulin action and glucose
homeostasis measures. The combination of aerobic and
resistance training is superior to aerobic or resistance
training alone for improving insulin sensitivity and gly-
cemic control. Nevertheless, aerobic and resistance train-
ing alone lead to some moderate improvements in insulin
sensitivity [13, 14, 61-73]. Highlighted results from the
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following studies evaluating exercise mode effects are
presented in Table 6.

The Diabetes Aerobic and Resistance Exercise (DARE)
trial aimed to determine the glycemic control effects of
aerobic and resistance training alone versus a sedentary
control group, and the incremental effects of performing
both types of exercise (combined exercise training) versus
aerobic or resistance training alone [13]. Two hundred
fifty-one adults with type 2 diabetes were randomized
to 22 weeks of no exercise control or 3 days per week of
(1) aerobic training (45 min/session at 75% HR ), (2)
resistance training (7 exercises/session, 2 to 3 sets of 7 to
9 repetitions per set), or (3) both aerobic and resistance
training (45 min/session at 75% HR_,, + 7 exercises/ses-
sion, 2 to 3 sets of 7 to 9 repetitions per set). The primary
outcome was absolute change from baseline to post-
intervention in HbA,  value, measured by turbidimetric
immunoinhibition. The following results are adjusted
estimated means from linear mixed-effects models.
Compared to the control group, change in HbAlc was
significantly greater in the aerobic training group (dif-
ference in change: — 0.51%). Similarly, as compared to
control, change in HbAlc values was significantly greater
in the resistance training group (difference in change:
— 0.38%). For the combined exercise training group,
change in HbA,. values provided an additional 0.46%
decrease compared to the aerobic training group and an
additional 0.59% decrease compared with the resistance
training group. Further, exercise-induced improvements
in glycemic control were greater among participants
with greater baseline HbA,;; among participants with
lesser baseline HbA,, only those in the combined exer-
cise training group improved. Seemingly, individuals with
type 2 diabetes and good glycemic control who wish to
improve their HbA, . through lifestyle change should per-
form both aerobic and resistance exercise. If glycemic
control is poor, either aerobic or resistance training alone
is suitable to improve HbA, ., but combination exercise
training continues to be superior to either mode alone.

The goal of the Health Benefits of Aerobic and Resist-
ance Training in individuals with type 2 diabetes
(HART-D) trial was to compare aerobic training alone,
resistance training alone, and a combination of both on
HbA,, in sedentary individuals, while maintaining simi-
lar weekly training durations—thus, the combination
group performed approximately half the time of each
mode compared to the aerobic and resistance train-
ing alone groups [14]. Two hundred sixty-two partici-
pants were randomized to a non-exercise control or (1)
aerobic exercise training (12 KKW at 50 to 80% VO,,...);
(2) resistance exercise training only (3 days/week, 2
sets of 4 upper body, 3 sets of 3 lower body, and 2 sets
of 2 abdominal exercises of 10 to 12 repetitions); or (3)
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combined resistance and aerobic training intervention
(10 KKW at 50 to 80% VOy,.« Plus 2 sessions/week, per-
forming 1 set of 9 exercises, at 10 to 12 repetitions). The
primary outcome was HbA,, measured during monthly
visits. Following the intervention, only the combination
group experienced a significant improvement in HbA,_
(— 0.23%). The combination group was significantly dif-
ferent compared to the control group (between-group
difference in change: — 0.34%, p=0.03). Neither resist-
ance training nor aerobic training alone resulted in a sig-
nificant change in HbA . compared to the control group.
Thus, although both resistance and aerobic exercise
training provide health benefits, only the combination of
the two is associated with reductions in HbA,_ in indi-
viduals with type 2 diabetes. Moreover, the cumulative
benefit among change in HbA,_ is superior in the com-
bined exercise training group compared with either aero-
bic or resistance training alone. As in the STRRIDE AT/
RT study, these findings appear to be more than additive
effects when combining aerobic with resistance exercise
on glucose control measures.

Summary

Interestingly, for individuals with dyslipidemia in
STRRIDE AT/RT, resistance training alone did not sig-
nificantly impact fasting and IVGTT-derived markers of
insulin sensitivity. For individuals with type 2 diabetes
in DARE and HART-D, the distinct effects of resistance
training alone on changes in HbA, were less clear. In
DARE, compared to no exercise control, resistance train-
ing significantly reduced HbA,, whereas in HART-D,
there was no significant effect of resistance training on
HbA, .. These discordant findings are likely attributable
to differences in study design and population (e.g., resist-
ance training prescriptions, duration of diabetes, and
medications).

Resistance training is thought to increase GLUT4
expression in skeletal muscle and reduce the burden on
pancreatic B-cells to secrete insulin [11, 56]. Moreover,
resistance training is well known to increase protein syn-
thesis and muscle fiber hypertrophy through the mecha-
nistic target of rapamycin (mTOR) signaling pathway;
however, mTOR’s role in improving insulin sensitivity
remains unknown. In some studies, the failure of resist-
ance training to improve insulin sensitivity in individuals
with metabolic disturbances coincides with diminished
phosphorylation of muscle AMPK and increased phos-
phorylation of mTOR [56]. These findings suggest that
activation of the mTOR pathway may be involved in inhi-
bition of exercise training-related increases in AMPK
activation and its downstream targets.

When resistance training is paired with vigorous
intensity aerobic exercise, marked improvements occur
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in Si, DI, LP-IR, fasting insulin, HOMA-IR, and HbA, .
The mechanisms by which combination training (i.e.,
both aerobic and resistance exercise) elicits these nota-
ble improvements remain unknown. Of note, in both
STRRIDE AT/RT and DARE, the participants in the
combination groups exercised approximately double the
time that the aerobic and resistance training alone groups
performed. Therefore, we do not know if the marked
beneficial combination training effects on insulin sen-
sitivity in these two studies are due to the greater total
volume of exercise performed or are due to a mechanis-
tic synergy of the two exercise modes. However, findings
from HART-D—where exercise volume was comparable
between the combination, aerobic only, and resistance
only groups—support the notion that combination train-
ing produces more than additive, even synergistic, effects
for markers of glycemic status.

Clinical Lifestyle Intervention Effects

STRRIDE Findings

Within traditional fasting measures of glycemic status
in STRRIDE-PD, the clinical lifestyle intervention—low-
amount/moderate-intensity aerobic exercise with 7%
weight loss goal via caloric restriction—improved both
fasting insulin (— 21.5£22.0 pmol/L, p<0.001) and
HOMA-IR (— 0.9£0.9, p<0.001) (Table 4). Further, the
clinical lifestyle group was the only one to significantly
improve fasting glucose (— 0.3+0.4, p<0.001). Among
the spectroscopy-derived markers of insulin resist-
ance and type 2 diabetes risk, the clinical lifestyle group
had the most robust decrease in LP-IR (— 12.44+14.1,
p<0.001); this change was significantly greater than
all other exercise-only groups (p<0.001 for difference
among groups). Further, the clinical lifestyle interven-
tion induced a significant improvement in Diabetes Risk
Index (— 8.3+£10.4, p<0.001), which was significantly
greater than the change in both moderate-intensity exer-
cise-only groups (p=0.002 for difference among groups).
Among OGTT measures, all exercise intervention
groups significantly improved insulin AUC (ranging from
— 3484350 pmol/Lx2 h to — 166+330 pmol/L x 2 h;
p<0.01 for all groups) and Matsuda Index (ranging from
1.08+1.7 to 3.98+3.9; p<0.01). Only the high-amount/
moderate-intensity (— 734123 mmol/L x 120 min,
»<0.001) and the clinical lifestyle (— 96.04+132.0 mmol
/L x 120 min, p <0.001) groups improved glucose AUC.

Previous Findings in the Literature

Lifestyle interventions including exercise in addition to
caloric restriction resulting in weight loss—typically of at
least 5% body weight—improve measures of insulin sen-
sitivity and glucose homeostasis. Usually, these improve-
ments out-perform interventions including only exercise;
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however, exercise alone in comparison with weight loss
plus exercise still has a substantial effect on insulin action
and glucose homeostasis [18-20, 74—81]. Highlighted
results from the following studies evaluating lifestyle
intervention effects are presented in Table 7.

Cox and colleagues investigated the independent and
additive effects of 16 weeks of caloric restriction alone,
exercise alone, and caloric restriction combined with
exercise on glucose and insulin metabolism [18]. Sixty
non-diabetic (normal or impaired glucose tolerance)
men with overweight or obesity were randomized to
either maintain or restrict their energy intake (reduce by
1000-1500 kcal/day; 15% protein, 30% fat, and 55% car-
bohydrates). Within each caloric restriction arm, the par-
ticipants were further randomized to 3 days per week for
30 min of either: (1) light-intensity exercise control group
(1 session of flexibility exercise and 2 sessions/week of
stationary cycling against zero resistance); or (2) vigor-
ous-intensity exercise group (stationary cycling at 60 to
70% of their maximum workload). Fasting blood samples
and a two-hour 75 g OGTT were performed following
an overnight fast. Vigorous exercise training exhibited an
independent effect on the glucose and insulin responses
to an OGTT. Further, the combination of caloric restric-
tion and vigorous intensity exercise provided an addi-
tive effect on reductions in insulin AUC. Thus, both
caloric restriction and exercise provide a potent strategy
to reduce the risk of impaired glucose tolerance, insulin
resistance, and diabetes in sedentary men with over-
weight or obesity.

Larson-Meyer and colleagues evaluated the effects of
6 months of calorie restriction—with or without exer-
cise—on insulin sensitivity, -cell function, and body fat
indices in the Comprehensive Assessment of the Long-
Term Effects of Reducing Intake of Energy (CALERIE";
Phase 1 conducted at Pennington Biomedical Research
Center) randomized controlled trial [82]. Forty-eight
non-diabetic adults with normal glucose tolerance
and overweight were randomly assigned to one of four
groups: (1) control (weight maintenance diet); (2) calo-
rie restriction (25% caloric restriction of baseline energy
requirements); (3) calorie restriction plus exercise (12.5%
caloric restriction and 12.5% increase in energy expendi-
ture through structured exercise); or (4) very low-calorie
diet (890 kcal/day caloric intake until 15% weight reduc-
tion followed by weight maintenance diet). The struc-
tured exercise program included 5 days per week of
walking, running, cycling, or stairclimbing. Participants
completed three sessions per week under supervision;
the two unsupervised sessions were verified with port-
able heart rate monitors. The amount of time needed to
expend the 12.5% calorie target was determined on an
individual basis by calculating the oxygen cost of three
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self-selected exercise workloads on a treadmill, station-
ary cycle, or stairmaster [83]. To assess insulin sensitiv-
ity, three-hour IVGTTs were performed during inpatient
stays at baseline and the end of the intervention fol-
lowing an overnight fast and at least 48 h after the final
exercise session. Following the 6-month intervention, no
group experienced a significant change in fasting glucose,
whereas all three interventions significantly decreased
fasting insulin and AIRg. Both the calorie restriction
plus exercise and very low-calorie diet groups signifi-
cantly improved insulin sensitivity index by 37 + 18%
and 70 £ 34%, respectively, while the calorie restriction
alone group tended to increase insulin sensitivity index
(40 £ 20%; p=0.08); there were no significant differences
among the three intervention groups. Improvements in
insulin sensitivity index were correlated with reductions
in weight, fat mass, and visceral adipose tissue, but not
with adipocyte size or ectopic fat distribution in liver or
muscle. Findings from this study suggest that when the
energy deficit is held constant, calorie restriction alone
or with aerobic exercise similarly improves skeletal mus-
cle insulin sensitivity and early phase -cell function for
adults with overweight and normal glucose tolerance. Of
note, participants in this study self-selected their exercise
intensity, which may underestimate the role of exercise
when combined with caloric restriction [83].

Gilbertson and colleagues examined the effect of a
16-week Diabetes Prevention Program combined with
high-intensity interval training or moderate-intensity
continuous training on glycemic control in sedentary
adults with prediabetes [19]. Participants (n=29) par-
took in the Diabetes Prevention Program and were
randomized to three days per week of either: (1) high-
intensity interval training (progressed to ten, 30-s sprints
at maximal self-selected intensity within 10 bpm of
HR, .. or RPE of 19-20, followed by a 4-min active rest
at 2.0 mph and 0% grade); or (2) moderate-intensity
continuous training (progressed to 60 min of walking
at 45-55% HR . ..ve)- Fasting blood was drawn to assess
glucose, insulin, HOMA-IR, and HbA, .. Both the high-
intensity interval training and moderate-intensity con-
tinuous training groups significantly decreased fasting
glucose (— 0.09£0.01 and — 0.18 £0.02 mmol/L, respec-
tively) and HbA,. (— 0.214+0.09 and — 0.1240.12%,
respectively), with no difference between groups. Thus,
when combined with the Diabetes Prevention Program,
both exercise interventions effectively improved fasting
glucose and HbA,, among individuals with prediabetes.

Bouchonville and colleagues tested the independent
and combined effects of weight loss and exercise on insu-
lin sensitivity and other cardiometabolic risk factors in
frail, older adults with obesity [20]. One hundred seven
individuals were randomized to either (1) control group;
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(2) 10% caloric restriction-induced weight loss group
(prescribed calorie deficit of 500-750 kcal/day and die-
tary intake of 1 g/kg of body weight of high-quality pro-
tein); (3) exercise training without weight loss (~ 90 min/
session consisting of 30 min of balance and flexibility
exercises, 30 min of aerobic exercise at 70—85% peak HR,
and 30 min of resistance exercise of 1-2 sets, 6—8 repeti-
tions at 70—85% 1 repetition maximum of 9 exercises); or
(4) combined weight loss plus exercise group (full caloric
deficit prescription plus a full exercise prescription) for
1 year. A standard 75 g OGTT with blood sampling was
performed following an overnight fast. Insulin sensitivity
increased in both weight loss only and combined weight
loss plus exercise groups, with a greater improvement
in the combined weight loss plus exercise group. How-
ever, no responses in insulin sensitivity were observed in
either the exercise training without weight loss or con-
trol groups. The combined weight loss plus exercise and
weight loss groups had similar improvements in insulin
and glucose AUCs, with no changes observed in the exer-
cise without weight loss or control groups. Thus, weight
loss improves insulin sensitivity and other cardiometa-
bolic risk factors, while an even greater improvement in
insulin sensitivity can be achieved when exercise training
is added to weight loss.

In a 6-month randomized controlled trial, Brennan and
colleagues investigated the effects of caloric restriction-
induced weight loss with and without exercise on insulin
sensitivity in physically inactive older obese adults with
or at high risk for type 2 diabetes [84]. Eighty-four par-
ticipants were randomized to either (1) health education
control group; (2) 10% caloric restriction-induced weight
loss group (prescribed calorie deficit of 500—1000 kcal/
day and a low-fat diet); or weight loss plus exercise group
(full calorie deficit prescription plus a progressive exer-
cise training program). The exercise program included
4-5 days/week (180 min/week total) of semi-supervised
aerobic exercise performed at 50—80% HR ... Starting
at week 8, participants were also prescribed 2 days/week
(30 min/session) of resistance training with machines
focused on major muscle groups. Markers of insulin sen-
sitivity were assessed with a hyperinsulinemic—euglyce-
mic clamp performed after an overnight fast. Compared
to the health education control group, only the weight
loss plus exercise group experienced a greater improve-
ment in fasting insulin and HbA1lc. After controlling for
circulating insulin concentrations, only the weight loss
plus exercise group improved peripheral insulin sensi-
tivity—assessed as rate of glucose disposal accounting
for plasma insulin during steady state—compared to the
health education control group. However, after control-
ling for % weight loss, no significant between-group dif-
ferences existed for peripheral insulin sensitivity. Further,
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no between-group differences were found in fasting glu-
cose and endogenous glucose production. The authors
noted that the caloric restriction-induced weight loss
alone group experienced modest improvements in insu-
lin sensitivity, while also experiencing reductions in lean
mass and muscle strength. However, when exercise was
added to caloric restriction-induced weight loss, more
robust improvements occurred for skeletal muscle insulin
sensitivity with concurrent maintenance of muscle mass
and strength and reductions in ectopic fat deposition.

Summary

As compared to caloric restriction or structured exer-
cise alone, clinical lifestyle interventions clearly produce
superior effects on markers of glycemic status derived
from multiple techniques across the cardiometabolic
disease spectrum. However, of the studies included in
this narrative review, the extreme heterogeneity of study
designs and populations preclude the ability to determine
whether there is an optimal combination of different
exercise and weight loss prescriptions. Although out-
side the scope of this review, disentangling the effects of
various dietary strategies (e.g., nutrient timing and com-
position) further complicates the caloric restriction com-
ponent [85].

Although little research exists investigating the under-
lying mechanisms of clinical lifestyle interventions, one
possible explanation for superior effects of combined
caloric restriction and exercise interventions on glyce-
mic status relates to fatty acid oxidation and intramus-
cular lipid content [86]. Obesity is associated with a
lower distribution of type I muscle fibers, impaired fatty
acid oxidation, and increased lipid deposition. Weight
loss effectively reduces skeletal muscle lipid content and
increases skeletal muscle insulin sensitivity by increas-
ing enzymes responsible for phosphorylation, storage,
and oxidation of glucose, increasing GLUT4 expression,
and increasing tyrosine kinase activity of skeletal mus-
cle insulin receptors [86]. As mentioned above, aerobic
exercise improves skeletal muscle insulin sensitivity and
increases fatty acid oxidation, which may serve as a pro-
tective mechanism against the accumulation of intramus-
cular fat content.

Another benefit of clinical lifestyle interventions is that
caloric restriction appears to independently improve free
fatty acid-induced hepatic insulin resistance. As com-
pared to 12 weeks of aerobic exercise training alone,
combining aerobic exercise with 500 kcal/day of caloric
restriction improved hepatic insulin sensitivity—meas-
ured during lipid-infused conditions of a two-stage eug-
lycemic—hyperinsulinemic clamp—to a greater extent in
adults with impaired glucose tolerance and obesity [87].
Thus, as lipid accumulation in the liver is a primary driver
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of obesity-related insulin resistance and type 2 diabetes
[88], caloric restriction beneficially affects an additional
target organ, creating a more potent benefit of clinical
lifestyle intervention [85].

Conclusion
As the disturbances in glucose homeostasis become more
challenging to reverse along the progression to type 2
diabetes [5, 6], identifying the optimal preventive treat-
ment early in the development of disease is an important
public health matter. Overall, evaluation of results from
the studies included in this narrative review highlights
the following consistent findings: (1) randomized trials
comparing combinations of aerobic and resistance exer-
cise to either mode alone show combination training pro-
duces the greatest beneficial effects for insulin sensitivity
and glucose homeostasis markers—in fact, the effects of
the combination seem to be more than additive, imply-
ing that synergic mechanisms may be in play; and (2) life-
style interventions incorporating weight loss via caloric
restriction with aerobic exercise are superior to either
lifestyle change alone, especially among individuals fur-
ther along the progression to diabetes. Although existing
evidence regarding amount and intensity of aerobic exer-
cise is somewhat conflicting, moderate intensity—when
matched for amount relative to body weight—appears
to elicit the most beneficial improvements in IVGTT-
derived skeletal muscle insulin sensitivity and early phase
pancreatic S-cell function, as well as OGTT-derived glu-
cose tolerance compared to vigorous intensity. On the
other hand, for peripheral insulin sensitivity measures
derived from hyperinsulinemic—euglycemic clamps, vig-
orous intensity exercise appears to elicit greater improve-
ments. These concepts are also highlighted throughout
the American College of Sports Medicine’s recently
updated consensus statement regarding exercise and
physical activity for individuals with type 2 diabetes [89].
The summation of evidence presented in this review
also sheds light on key differences in study design fur-
ther complicating the ability to derive a consensus for
the optimal exercise exposure to improve glycemic sta-
tus. As few true dose-response exercise trials exist to
date, the heterogeneous study designs described herein
reveal the difficult nature of discerning the optimal exer-
cise prescription for prevention and treatment of type 2
diabetes. Although not completely understood, several
mechanisms have been described for how aerobic exer-
cise improves skeletal muscle, hepatic, pancreatic, adi-
pose tissue, and whole-body insulin sensitivity. However,
the physiologic pathways by which combining aerobic
exercise with either resistance training or caloric restric-
tion-induced weight loss produce their marked effects
on insulin sensitivity remain elusive. As the public health
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burden of diabetes continues to grow, further investiga-
tion is critical to identify optimal exercise intervention
characteristics focusing on combinations of mode, inten-
sity, and amount for disease prevention and treatment.
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