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Maximal muscular power: lessons from
sprint cycling
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Abstract

Maximal muscular power production is of fundamental importance to human functional capacity and feats of
performance. Here, we present a synthesis of literature pertaining to physiological systems that limit maximal
muscular power during cyclic actions characteristic of locomotor behaviours, and how they adapt to training.
Maximal, cyclic muscular power is known to be the main determinant of sprint cycling performance, and therefore
we present this synthesis in the context of sprint cycling. Cyclical power is interactively constrained by force-
velocity properties (i.e. maximum force and maximum shortening velocity), activation-relaxation kinetics and muscle
coordination across the continuum of cycle frequencies, with the relative influence of each factor being frequency
dependent. Muscle cross-sectional area and fibre composition appear to be the most prominent properties
influencing maximal muscular power and the power-frequency relationship. Due to the role of muscle fibre
composition in determining maximum shortening velocity and activation-relaxation kinetics, it remains unclear how
improvable these properties are with training. Increases in maximal muscular power may therefore arise primarily
from improvements in maximum force production and neuromuscular coordination via appropriate training.
Because maximal efforts may need to be sustained for ~15-60 s within sprint cycling competition, the ability to
attenuate fatigue-related power loss is also critical to performance. Within this context, the fatigued state is
characterised by impairments in force-velocity properties and activation-relaxation kinetics. A suppression and
leftward shift of the power-frequency relationship is subsequently observed. It is not clear if rates of power loss can
be improved with training, even in the presence adaptations associated with fatigue-resistance. Increasing
maximum power may be most efficacious for improving sustained power during brief maximal efforts, although
the inclusion of sprint interval training likely remains beneficial. Therefore, evidence from sprint cycling indicates
that brief maximal muscular power production under cyclical conditions can be readily improved via appropriate
training, with direct implications for sprint cycling as well as other athletic and health-related pursuits.
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Key Points

� Maximal muscle power production under cyclical
conditions is interactively constrained by force-
velocity properties, activation-relaxation kinetics and
muscle coordination across the continuum of pos-
sible movement frequencies.

� Fatigue alters the power-frequency relationship, with
a higher degree of power loss at higher movement
frequencies.

� Maximal muscular power production can be readily
increased with appropriate strength and power
training; it remains less clear if rates of power loss
during brief maximal sustained efforts can be
improved with training.

Introduction
Feats of strength, speed and power have captivated
humans for millennia and every 4 years, Olympic events
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which exhibit the (contemporary) limits of human per-
formance are followed with intent by millions inter-
nationally. Such feats of human potential are
fundamentally determined by muscular mechanical
function, and especially, maximal muscular power. In-
deed, outside the world of sport, maximal muscular
power is often of life-or-death importance in predator-
prey interaction and is important in health and disease.
Track sprint cycling is an Olympic sport in which some
of the most powerful athletes in the world generate re-
markable speeds on a bicycle, with Olympic gold and
fourth place often separated by only hundredths of a
second. Previous investigators have reported that sprint
cycling performance is largely determined by maximal
muscular power production [1] and therefore serves as a
useful model to investigate and advance the limits max-
imal muscular power by scientists and practitioners
alike. Here, we present a synthesis of literature pertain-
ing to physiological systems that limit maximal muscular
power during cyclic actions characteristic of locomotor
behaviours, and how they adapt to training, framed
within the context of sprint cycling.
There are several sprint cycling events and currently

three are contested at the Olympics (i.e. Match Sprint,
Keirin and Team Sprint). Each event has its own nu-
anced technical, tactical and physiological demands, but
there is substantial cross-over and multi-event Olympic
champions are not uncommon. Cycling performance
(e.g. velocity or time) is determined exclusively by the
balance between propulsive power and resistance [1–8].
Power demand may be divided primarily into the power
required to overcome aerodynamic drag, rolling resist-
ance and drive train friction, and to bring about a
change in potential or kinetic energy [1, 2, 6, 7]. The
relative importance of these terms is dependent upon
the instantaneous conditions and can change within a
sprint cycling event [1]. During brief maximal accelera-
tions from low speed, the change in kinetic energy will
consume most of the power (Fig. 1) [9], and is related to
mass and acceleration [10]. Because maximal accelera-
tions are often initiated from a slow rolling or standing
start in sprint cycling, power demand is directly propor-
tional to the combined mass of the bicycle and rider [1].
At steady state speeds above ~40 km/h on flat terrain
more than 90% of power is required to overcome air re-
sistance, which is related to air density, frontal area,
shape and velocity [10, 11]. Air (or aerodynamic) resist-
ance (force) is proportional to the square of air speed,
and power is related to the product of air speed squared
and ground speed. With increasing speed, an exponen-
tially larger increase in power is required to achieve a
further increase in speed [1, 5, 6, 10]. Therefore, rider
aerodynamic drag which is most commonly quantified
as the drag area (CDA; a term combining the rider drag

coefficient and frontal area) will account for most of the
power demand at high speed [1], and reinforces the ad-
vantages of drafting where possible during sprint cycling
competition [12, 13].
Power supply is determined by neuromuscular and

metabolic capabilities [6]. Accordingly, due to the very
high levels of muscular power required to generate high
movement velocities, sprint cyclists tend to be more
mesomorphic, stronger and more maximally powerful
than other (i.e. endurance) cyclists [14–17]. The con-
straints inherent to human muscle contractile function
and bioenergetics mean that power supply is limited in
both rate and capacity from aerobic and anaerobic en-
ergy sources [18, 19], and so a negative exponential
power-duration relationship is observed during maximal
efforts [20]. In addition, both maximal and sustained (i.e.
for a given event duration) power production are
pedalling-rate dependent [4, 6]. As sprint cycling is per-
formed on fixed-gear bicycles, the pedalling rate is non-
constant and dependent upon the interaction of gear ra-
tio and speed. The optimal power supply strategy (i.e.
pedalling rate selection via gearing, and pacing) will
therefore be dependent upon individual athlete charac-
teristics, event distance, technical and tactical require-
ments [18, 21, 22]. Increasing maximal power for a given
bicycle-rider mass will be most beneficial to improving
the maximal rate of acceleration from a standing start,
whilst increasing maximal and sustained power for a
given CDA will be most beneficial to increasing max-
imum speed and speed endurance. Assuming technical/
tactical competency and access to modern (i.e. aero-
dynamic) equipment [11], the sprint cyclist that exhibits
the highest levels of maximum and sustained power rela-
tive to their body mass and CDA will be the fastest [23],
and generally the most successful [24].

Fig. 1 An example power profile and resulting speed from a highly
trained male sprint cyclist during a maximal 500 m effort performed
from a standing start (with an effort duration of 31.91 s). The dotted
vertical line represents the transition from standing to seated cycling
and is an approximate demarcation between acceleration and
maximum speed/speed endurance phases
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Maximal Cycling Power
Mechanical Basis of Maximal Cycling Power
Cycling is a motor task which involves the co-ordination
the lower body prime movers operating in cyclic phases
of shortening and lengthening to move the pedal (i.e. via
the foot-pedal interface) in a circular trajectory at a
given movement speed or pedalling rate, whilst applying
the requisite force to the pedal necessary to achieve a
given power output [25, 26]. Mechanical power is the
product of force and velocity, or torque and angular vel-
ocity in the context of cycling [27–29]. Within fixed gear
cycling, pedal forces directed normal to the crank (i.e.
torque) will facilitate pedalling rate and power produc-
tion; however, the increasing pedalling rate will then
constrain maximal force and power via force-velocity
and activation-relaxation effects (the ‘Physiological Basis
of Maximal Cycling Power’ section). Power may be de-
termined in several different ways, but it is generally re-
ported as the average power produced by both legs over
a half pedal cycle from top dead-centre to bottom dead-
centre [30, 31], or a complete pedal cycle [1, 6, 32]. In
research settings, specialised ergometers have been de-
veloped to measure torque, pedalling rate and power
production [30–35], and in applied settings, power pro-
duced by sprint cyclists is typically measured via com-
mercially available cranks instrumented with strain
gauges (e.g. the SRM [Schoberer Rad Messtechnik Jülich,
Germany] power metre) [1, 36, 37]. Maximum power
values as high as 2400-2500 W and 25-26 W.kg−1 have
been reported in elite male track sprint and BMX cy-
clists [1, 25, 38], and values of 20-23 W.kg−1 (e.g. ~1400-
1600 W at a body mass of 70 kg) reported in elite female
track sprint cyclists [39].
Males produce ~25% more maximal power than fe-

males due to a larger muscle mass [39–41], and possibly
a higher relative area of muscle mass comprised of fast
twitch fibres [42, 43], with muscle mass and fibre com-
position being strongly linked to maximal power pro-
duction (the ‘Physiological Basis of Maximal Cycling
Power’ section) [32, 44, 45]. Approximately ~80-85% of
the power produced over a pedal cycle is generated dur-
ing leg extension (i.e. the downstroke), whilst ~15-20%
is produced during leg flexion (i.e. the upstroke) [26,
46]. This power is a product of joint-specific actions of
the ankle, knee and hip, and by upper body actions
which transfer power across the hip [46, 47]. Hip exten-
sion contributes the most to total power output during
maximal cycling, followed by knee extension, knee
flexion, and finally ankle plantarflexion [46, 47]. During
standing cycling ~8-12% more maximum power may be
produced versus seated cycling [48, 49] via a transfer of
power across the hip from the upper body [6, 50].
Whilst it has been proposed that the lower body prime
movers are not fully active (e.g. as ascertained from

electromyographic [EMG] activity) during maximal cyc-
ling [51, 52], simulation data indicates that agonist mus-
culature is operating at or near its maximal capacity
[53]. Nonetheless, it should be acknowledged that the
use of EMG data to assess muscle activation remains
contentious [54], and a high degree of variability has
been reported during maximal cycling [55]. Additionally,
simulations of muscular behaviour rely on several as-
sumptions which may not hold for all individuals or cir-
cumstances [53].

Physiological Basis of Maximal Cycling Power
The maximal ‘fatigue-free’ power that can be produced
during a cycling bout is determined by an interaction of
intrinsic muscle properties, neural activation and con-
straints (e.g. movement velocity and time available to
produce force) imposed by the task [56, 57]. Intrinsic
properties governing muscle force production during
cyclic contractions include the force-length and force-
velocity (i.e. maximum force and maximum shortening
velocity) relationships, activation-relaxation kinetics (i.e.
the time required to activate and relax muscle following
neural excitation) and history-dependent effects (i.e.
force enhancement after active lengthening, and force
depression after shortening) [56–60]. Given the direct
relationships between crank length and muscle excur-
sion amplitude, pedal velocity and muscle shortening
velocity, and pedalling rate and excitation-relaxation kin-
etics, these variables interactively constrain power pro-
duction during sprint cycling [57, 61]. Because the hip
and knee extensors appear to actively lengthen immedi-
ately preceding shortening during maximal cycling [62,
63], there may be a history-dependent attenuation of the
force-length effects on force production, especially at
long muscle lengths [64]. This proposition is supported
by the finding that pedal and joint-specific power
production does not meaningfully change across a
broad range (e.g. 145 to 195mm) of crank lengths
[65, 66]. Force-velocity and activation-relaxation re-
quirements placed on muscle are linearly coupled for
a given crank length during cycling [58, 66, 67], and
therefore maximal muscle power production during
sprint cycling (i.e. for a given individual) is deter-
mined primarily by pedalling rate.
The relationships between torque, power and pedalling

rate during cycling generally conform to the force-
velocity and power-velocity relationships observed
within isolated muscle [32, 34, 68], acknowledging that
there is a linear rather than hyperbolic relationship be-
tween force and velocity during cycling [32, 38, 69–71].
Accordingly, there is a negative linear relationship be-
tween torque and pedalling rate, and a parabolic rela-
tionship between power and pedalling rate, with
maximum power occurring at approximately half of the
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respective maximum torque and maximum pedalling
rate values (Fig. 2) [23, 25, 32, 69]. The apex of the
power-pedalling rate relationship typically occurs at an
‘optimal cadence’ (i.e. ‘optimal frequency’) of 120-130 rpm
[6]. Higher optimal cadence values tend to be observed in
conjunction with higher maximum power values [25, 72],
which is unsurprising as both parameters are strongly
linked to fast twitch (i.e. skeletal muscle fibres expressing
a predominance of myosin heavy chain [MyHC] IIa and
IIx isoforms) muscle fibre content [30, 45, 68]. An evenly
mixed distribution of fast and slow twitch fibres across
agonist musculature has been proposed to produce an op-
timal cadence of around 120 rpm in healthy non-power
trained adults [30, 31, 45, 72]. Power trained athletes and
individuals genetically endowed with a high proportion of
fast twitch fibres may exhibit optimal cadences of 130 rpm
and above [72–74].
Maximum muscle force and shortening velocity set

the limits of the intrinsic muscle-force velocity relation-
ship and power production at any given shortening vel-
ocity is determined by the interaction of these two
parameters [28]. Maximum force will therefore directly
influence the magnitude and rate of torque production
at any given pedalling rate during cycling [28, 75]. The
maximum force generated by a muscle fibre of any given
MyHC isoform is directly proportional to its cross-
sectional area [28, 76, 77]. Fast twitch fibre composition
influences intrinsic force-velocity properties and muscle

power production via a maximal unloaded shortening
velocity that is 3-5 times faster than slow twitch fibres
[28, 77–80]. Higher maximal shortening velocities in
type II fibres are accompanied by sarcoplasmic reticulum
Ca2+ handling kinetics and MyHC contractile machinery
that allow faster rates of ATP hydrolysis, excitation-
contraction coupling, and cross-bridge cycling [81–86].
Fast twitch fibres can therefore produce more force and
power than slow twitch fibres at any given shortening vel-
ocity, with the effects being magnified with increasing
shortening velocity [83]. In addition, for a given fibre type,
fibre shortening velocity is proportional to its length, or
number of sarcomeres in series [87]. All else being equal
(e.g. muscle cross-sectional area), muscles that have longer
fibre lengths have higher shortening maximal velocities,
and therefore, a greater capacity to produce force and
power at a given shortening velocity [28, 88, 89].
As pedalling rate increases during cycling, a greater

proportion of the duty cycle becomes occupied by the
processes of activation and relaxation, and therefore the
role of activation-relaxation kinetics becomes increas-
ingly critical to maximising positive work and minimis-
ing negative work [53, 56, 59, 61, 71, 90, 91]. For
example, when cycling at 120 rpm, a full pedal revolu-
tion will take 500 ms, thus providing 250 ms for the
shortening contraction to generate force. Even if rates of
force development are high (e.g. due to high levels of
neural drive and a brief electromechanical delay) [75],
the minimum time required to activate and relax muscle
will compromise the attainment of maximum force [6],
and the total work that can be produced during a pedal
cycle [57]. The minimum time required to deactivate or
relax muscle may be 4-6 times longer than that required
to activate muscle [53, 90, 92–94]. Accordingly, unreal-
ised work resulting from time required to relax muscle
is greater than that resulting from time to activate
muscle [59]. Therefore, at most pedalling rates obtained
within sprint cycling, the average force production over
the pedal cycle will be substantially constrained by
activation-relaxation kinetics [57], with relaxation kinet-
ics being the more prominent limiting factor [59]. Ca2+

handling kinetics and cross-bridge cycling rates are the
primary determinants of activation-relaxation kinetics
[56, 90, 91, 95], and are primarily fibre-type dependent
[83]. As noted, type II fibres are known to have faster
Ca2+ handling and MyHC contractile machinery than
type I fibres [81–86] allowing faster shortening veloci-
ties, and rates of force development and relaxation [68,
84, 86, 96]. In addition, series elastic component stiffness
will influence the electromechanical delay and the speed
at which muscle force can be transferred to the pedal
following muscle contraction [75, 97, 98].
Whilst neural drive influences the rate and magnitude

of force production at any given pedalling rate during

Fig. 2 The torque- and power-pedalling rate relationship,
parameters and determinants. The torque- and power-pedalling rate
relationship is determined by an interaction of ‘force-based’ and
‘velocity & frequency-based’ factors. It should be noted that all
determinants influence torque and power production at most
pedalling rates experienced within sprint cycling; however, the
relative importance of a given factor is pedalling rate dependent.
Abbreviations: PMax, maximum power; RPMMax, maximum pedalling
rate; RPMOpt, optimum pedalling rate (i.e. optimal frequency); TMax,
maximum torque; TOpt, optimum torque
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sprint cycling [75], the ability to effectively coordinate
the lower body synergists may limit the ability to pro-
duce power at pedalling rates above optimal cadence
[99]. Maximal muscle activation does not appear to be
influenced by pedalling rate, but an earlier EMG onset
of the hip and knee extensors within the pedal cycle oc-
curs with increasing pedalling rate [51, 52], which may
reflect a coordinative attempt to account for the reduced
timeframe available to produce force [56, 90]. Additional
coordinative adjustments at high pedalling rates may in-
clude a preferential recruitment of fast twitch motor
units [100], and an earlier deactivation of slow twitch
motor units [101], to minimise the detrimental effects of
slower activation-relaxation kinetics on power produc-
tion. Nonetheless, disruptions in limb and muscle coord-
ination consistently occur at or shortly after optimal
cadence [102]. An increase in ineffective force and un-
realised work at high pedalling rates indicates that co-
ordinative adjustments cannot successfully overcome the
limitations imposed by minimum timeframes required
for activation and relaxation, and there is a limit to how
well the limbs can be coordinated to effectively orient
force at high movement frequencies [26, 52, 99, 102].

Developing Maximal Cycling Power
Increasing maximal cycling power production is readily
achievable through various training modalities that ad-
dress underlying force-, velocity- and frequency-based
neuromuscular properties [25, 103–107] (Table 1). It
seems that force-based (e.g. maximum force and rate of
force development) determinants of power production
are more modifiable with training than velocity- and
frequency-based (e.g. maximal shortening velocity,
activation-relaxation kinetics and neuromuscular coord-
ination) determinants [23, 25], and so, the power-
pedalling rate relationship may be raised with training,
but rightward shifts are less common. It is for this rea-
son that elite sprint cyclists tend to exhibit relatively
homogeneous velocity-based capabilities but heteroge-
neous force and power producing capabilities [23],
highlighting the importance of strength training in the
long-term development of maximal cycling power [25,
108]. Nonetheless, velocity- and frequency-based cap-
abilities remain critical in determining the limits of the
power-pedalling rate relationship [25], and training
should address the range of force- and velocity-based
capabilities to maximise improvements in sprint cycling
power production [25, 108, 109].
A higher capacity to produce maximum force does not

guarantee high rates of force development or power pro-
duction [110, 111], but due to the linear force-velocity
relationship, an increase in maximal force indicates a
greater capacity to produce force and power across a
range of movement velocities [104, 109, 112, 113].

Therefore, it is unsurprising that maximum force and
rate of force development exhibit strong associations
with maximal cycling torque and power production in
trained sprint cyclists [114, 115]. Increased maximum
force is underpinned by muscle morphological (e.g. in-
creased muscle cross-sectional area), architectural (e.g.
increased pennation angle and decreased fascicle length)
and neural (e.g. increased motor unit recruitment, rate
coding and synchronisation) adaptations [28, 116, 117],
which can be readily achieved through traditional
strength training methods [112, 113, 118, 119]. Accord-
ingly, traditional strength training remains a cornerstone
of a sprint cyclists training regime [25].
Whilst novice (i.e. without a resistance training back-

ground) athletes can experience increases in strength
and power in response to non-specific strength training
stimuli [108, 112, 120], a foundation of maximum
strength achieved through strength training is probably
optimal in maximising long-term power development
[108, 121]. Improvements in maximum force become in-
creasingly difficult to achieve as strength levels increase
and may translate less directly to improvements in high-
velocity force production [108], indicating the need for
greater specificity (e.g. movement pattern and velocity)
and/or variation (e.g. via varied prescription or the intro-
duction of novel methods) in training stimuli to achieve
further increases in maximal power [112, 118, 121, 122].
For example, novel strategies such as velocity-based
training [123, 124], eccentric training [125–128], isomet-
ric training [74] and electromyostimulation [129, 130]
incorporated alongside traditional strength training may
be effective in inducing further increases in maximal and
high-velocity force production (e.g. via enhanced neural
adaptations, preferential fast twitch fibre hypertrophy
and increased muscle-tendon unit stiffness) in strength
trained individuals. Upon the attainment of high levels
of maximum strength, explosive strength training may
become increasingly important to achieve further in-
creases in maximal power [108, 110, 111, 121] via neural
adaptations that increase the magnitude and rate of
force development at high movement velocities [75, 108,
109, 131–134]. Excessive attention to heavy and slow
strength training in the absence of explosive movements
seems to be sub-optimal for power production [110], es-
pecially during cyclic tasks at high movement frequen-
cies due to a slowing of relaxation kinetics [135, 136].
Whilst a foundation of traditional strength training

will benefit maximal cycling power, there is a clear bio-
mechanical discrepancy between the acyclic bilateral
movements (e.g. squats and Olympic lifts) often imple-
mented in practice and the cyclic unilateral demands of
sprint cycling. Cycling-based force and power training
likely remain critical to maximising the transfer of gen-
eral neuromuscular strength and power to specific sprint

Douglas et al. Sports Medicine - Open            (2021) 7:48 Page 5 of 15



cycling power production. Isokinetic cycling may be an
especially effective means to maximise the transfer of
general strength to cycling-specific force and power pro-
duction at a given pedalling rate [105]; however, evi-
dence supporting the utility of this modality is scarce.
Alternatively, recent evidence indicates that cycling-
specific isometric training can increase maximum cyc-
ling force and power production in elite sprint cyclists
[74]. Resistive forces are readily modifiable within track
cycling (e.g. via the manipulation of gear ratios, inertia,
gravitational and aerodynamic forces), and so any given
portion of the power-pedalling rate relationship may be
addressed within specific training. Specific sprint cycling
training utilising short duration efforts at high pedalling

rates (e.g. ~160-210 rpm) seems to be effective in in-
creasing power output at high pedalling rates in the ab-
sence of changes to MyHC composition and Ca2+

handling kinetics [104], potentially by improving neuro-
muscular coordination [51, 52, 99, 104]. Collectively,
maximal and explosive strength training in conjunction
with specific cycling power training can improve force-
based properties and raise the torque- and power-
pedalling rate relationship.
Improvements in velocity- and frequency-based cap-

abilities may not be largely attainable independent of
changes to MyHC composition [104, 137], and so are
less responsive to training [25]. Shifting between fast
twitch sub-fibre types (i.e. MyHC IIa ↔ IIx) can occur

Table 1 The effects of various training methods on the determinants of maximal muscular power, sustained power production
during brief maximal efforts, and rates of recovery

Determinants Maximum
force

Rate of force
development

Neuromuscular
coordination

Activation-
relaxation
kinetics

Maximum
shortening
velocity

Fatigue
resistance

Muscle
oxidative
capacity

Relevant mechanisms - Muscle CSA
- MyHC IIa/x
area ratio

- MyHC IIa/x
composition
(positive
effect)

- Neural drive
- Muscle
architecture

- Maximum
force

- Neural drive
- MyHC IIa/x
area ratio

- MyHC IIa/x
composition
(positive
effect)

- MTU stiffness

- Magnitude of
muscle
activation

-Timing of
muscle
activation and
relaxation

- MyHC IIa/x
composition
(positive effect)

-Sarcoplasmic
reticulum
structure and
function

- MyHC IIa/x
composition
(positive
effect)

- Muscle
architecture

- MyHC IIa/x
composition
(negative effect)

-Anaerobic
substrate
availability and
enzyme activity
-Metabolite
buffering capacity
-Pain tolerance

- Muscle CSA
(negative
effect)

- MyHC IIa/x
composition
(negative
effect)

- Mitochondrial
and capillary
density

-Oxidative
enzyme activity

Training methods for maximal power

Maximum strength
training

↑↑↑ ↑↑ - ↓ ↓ ↑ ↓ (?)

Explosive strength
training

↑↑ ↑↑↑ - - (?) - (?) ↑ -

Eccentric strength
training

↑↑↑ ↑↑↑ (?) - ↑ (?) ↑ (?) ↓ (?) ↓ (?)

Isokinetic strength and
power training

↑↑ (?) ↑↑↑ (?) ↑↑↑ (?) - - ↑↑ ↑

Specific cycling
strength and power
training (track or
ergometer)

↑↑ ↑↑↑ ↑↑↑ - (?) - (?) ↑ ↑

Training methods for sustained power and rates of recovery

Sprint interval ‘Speed-
Endurance’ training
(track or ergometer)

- ↑ ↑↑ - - ↑↑ ↑

Long interval training
(ergometer or road)

↓↓ ↓↓ - ↓↓ ↓↓ ↑↑ ↑↑↑

Endurance training
(ergometer or road)

↓↓ ↓↓ - ↓↓ ↓↓ ↑ ↑↑↑

Repeated sprint
training in hypoxia

- ↓ (?) - ↓ (?) ↓ (?) ↑↑ ↑↑↑

Single legged interval
training

- ↓ (?) - ↓ (?) ↓ (?) ↑↑ ↑↑↑

Abbreviations: CSA cross-sectional area, MTU muscle-tendon unit, MyHC myosin heavy chain isoform. Training effect key: ↑↑↑, highly positive; ↑↑, moderately
positive; ↑, possibly positive effect; ↓↓↓, highly negative; ↓↓, moderately negative; ↓, possibly negative; -, neither positive nor negative; (?), effect uncertain
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in response to training and detraining [138–142], but it
is less clear if shifts between type I and type II fibres
occur in humans [79, 143–145]. Sprint training does
seem to induce a bidirectional shift (i.e. MyHC I → IIa
← IIx) with the slowest and fastest MyHC isoforms con-
verging towards an intermediate isoform [146–148]. A
period of detraining following resistance training may
also induce an ‘overshoot’ of MyHC IIx composition
above pre-training levels, largely at the expense of
MyHC IIa fibres [141, 146], which has been associated
with an increased maximal shortening velocity and high-
velocity force production [149]. However, the detrimen-
tal effects of detraining on maximal force, power and
fatigue-resistance [149–151], could possibly outweigh
the positive effects of improved high-velocity contractile
performance in trained sprint cyclists. Alternatively,
some evidence indicates that eccentric training can in-
crease MyHC IIx composition at the expense of MyHC I
fibres [152], and indeed chronic eccentric training has
been demonstrated to increase cycling power [153]. Irre-
spective of the possibility for changes in MyHC compos-
ition, eccentric training can induce a preferential
hypertrophy of fast twitch fibres [125]. Whilst it is not
clear if preferential fast twitch fibre hypertrophy influ-
ences maximum shortening velocity or activation-
relaxation kinetics, an increase in the fast twitch to slow
twitch area ratio may increase high-velocity force pro-
duction [132, 136, 154, 155]. It is also plausible that ec-
centric training could increase maximal shortening
velocity and power production at high pedalling rates via
an increase in muscle fascicle length [89, 125], although
this supposition has yet to be experimentally
demonstrated.
Finally, sarcoplasmic reticulum volume density is a pri-

mary determinant of relaxation rates and high move-
ment frequencies across species [156]. Therefore, very-
high frequency training (e.g. on short-crank ergometers)
has been used in practice to specifically induce quantita-
tive and qualitative changes in sarcoplasmic reticulum
excitation-contraction coupling machinery [157]. None-
theless, at present, there is little evidence supporting the
efficacy of this modality in modifying sarcoplasmic
reticulum properties, although it may benefit power pro-
duction at high pedalling rates (e.g. at or above optimal
cadence) via improvements in neuromuscular coordin-
ation [104]. Whilst there may be little experimental evi-
dence identifying changes in velocity- or frequency-
based capabilities, it is important to note that small im-
provements have been reported over the career of elite
sprint cyclists [25]. Such improvements may not dramat-
ically improve maximal power production; however, it
may be speculated that maintaining or subtly improving
these qualities in the presence of extensive strength,
sprint interval and endurance training (the ‘Developing

fatigue resistance and muscle oxidative capacity’ section)
may mitigate a shift towards a slower phenotype, and
thus optimise long-term sprint cycling performance.

Sustaining Maximal Power Production
Fatigue-Related Impairments to Maximal Cycling Power
Maximal power is highly repeatable and fatigue resistant
if there is a sufficient recovery duration between efforts
[6, 158, 159]. However, the duration of most sprint cyc-
ling events requires sustained maximal efforts of ~15-60
s. Power production during human locomotion follows
an exponentially decaying relationship with effort dur-
ation (Fig. 3) due to fatigue-related impairments in
neuromuscular performance [20, 160–162]. During sus-
tained maximal efforts power production declines from
a maximal output at ~3 s to a near steady state after
~300 s [160, 162]. The power loss (i.e. also referred to as
the ‘fatigue index’) during brief (i.e. ~25-30 s) maximal
cycling efforts has been shown to be ~30-60%, or ~1-2%
per s−1 [46, 68, 155, 163, 164], concomitant with a pro-
gressive downregulation of agonist muscle activation
[165, 166]. A higher rate of power loss is evident with in-
creasing pedalling rate [46, 68, 163, 164, 167], which
likely reflects a leftward shift of the power-pedalling rate
relationship with fatigue [168].
The high mechanical demands (i.e. necessitating the

recruitment of fatigable fast twitch fibres) during sprint
cycling places a substantial reliance on anaerobic energy
production [169–171], and induces a progressive inhib-
ition of contractile performance [20, 172, 173]. This is
reflected in an altered power-pedalling rate relationship
in the fatigued state [168, 174]. Fatigued fibres exhibit
impairments in maximal force [175, 176], maximal
shortening velocity [177, 178] and relaxation rate [179–

Fig. 3 The power-duration relationship. Most sustained maximal
efforts during sprint cycling last between ~15 and ~60 s, and so are
characterised by a rapid exponential decay in power production.
Extensive research into the mechanisms of sustained power
production during brief maximal (i.e. ‘all-out’) efforts has utilised a 30
s (i.e. ‘Wingate’) exercise model
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181]. Maximum torque and maximum pedalling rate ap-
pear to be affected by fatigue at similar rates, collectively
contributing to power loss [174], although unpublished
data indicates that impairments in maximal force con-
tributes most to power loss at low cycle frequencies
whilst impairments in relaxation rates lead to the pro-
duction of negative work and power loss at high fre-
quencies (Link and Martin, In Review). A downwards
leftwards shift (and possibly an increased curvature of
the force-velocity relationship) is observed with fatigue
(Fig. 4) [174, 175, 178]. Accordingly, impairments in
both maximum power (e.g. ~45%) and optimal pedalling
rate (e.g. ~31%) are seen following ~30 s of maximal
cycling at the non-fatigued optimal pedalling rate [168].
The altered power-pedalling rate relationship may reflect
the specific recruitment and fatigue of fast twitch fibres
during maximal high-velocity tasks [68, 163, 182], and a
subsequent reliance on fatigue-resistant slow twitch fi-
bres to produce power [180], although this supposition
remains to be experimentally corroborated.
Fatigue during brief maximal cycling seems to be

largely peripheral rather than central in origin [143, 163,
183], although an interaction of mechanisms cannot be
discounted [165, 184, 185]. Rates of ATP resynthesis per
se may not limit performance during maximal tasks of
~60 s or less [20, 160, 161], rather contractile perform-
ance is downregulated when energy demands exceed
rates of energy resynthesis [186]. Rates of high energy
phosphate (i.e. ATP and creatine phosphate) depletion
and inosine monophosphate (IMP) accumulation are in-
deed high during brief maximal cycling at high pedalling

rates, especially in fast twitch fibres [187, 188], indicating
a high degree of myocellular energetic stress, but an en-
suing rigour state does not occur, and so excitation-
contraction coupling mechanisms may be downregu-
lated to avert a ‘metabolic catastrophe’ [186]. The
higher rates of ATP hydrolysis and glycolysis in fast
twitch fibres during maximal cycling likely results in a
faster accumulation of metabolic by-products impli-
cated in fatigue [83, 187, 189, 190].
The accumulation of the metabolites inorganic phos-

phate (Pi), hydrogen (H+) and adenosine diphosphate
(ADP) can interfere (i.e. directly or via a reduction of
cytosolic pH) with glycolytic enzyme (e.g. phosphofruc-
tokinase) activity, myofilament sensitivity to Ca2+, cross-
bridge kinetics (i.e. actomyosin binding number, force
and cycling rate) and sarcoplasmic reticulum Ca2+ re-
lease and reuptake kinetics [95, 180, 184, 189–193].
These effects are especially pronounced within fast
twitch fibre populations [194–196], and result in im-
paired force production, shortening velocity and rates of
relaxation. Metabolite accumulation in the interstitial
space also stimulates group III and IV chemo- and noci-
ceptive muscle afferents [184], which may directly de-
crease motor output via inhibition of motor neuron
recruitment and firing, and indirectly via a downregula-
tion of central motor drive accompanied by sensations
of discomfort or pain [162, 185, 191].

The Importance of Aerobic Fitness Within Sprint Cycling
In many instances within sprint cycling maximum sus-
tained power must be produced following a period of
submaximal work, and often repeatedly following recov-
ery periods ranging from minutes to hours. The magni-
tude of fatigue incurred from preceding submaximal
work will be directly proportional to the intensity and
duration of the bout, with rates of fatigue increasing
with the relative reliance on anaerobic energy metabol-
ism, as defined by the intensity relative to the maximum
intensity that can be sustained by oxidative phosphoryl-
ation (i.e. critical power) [20, 160–162]. It appears that
there is an approximately fixed amount of work (i.e. W’)
that can be completed above the critical power before
task failure occurs [19, 162]. W’ seems to represent a
combination of available biochemical stores and/or the
maximal tolerable limit of metabolite-induced peripheral
fatigue [197–200], with a depletion rate that is intensity-
dependent [162]. Therefore, a higher critical power (e.g.
via enhanced muscle oxidative capacity) will increase the
range of submaximal intensities at which W’ can be
spared, thus mitigating fatigue-related impairments to
subsequent maximal efforts.
The recovery of W’, which may reflect the resynthesis

of high energy phosphate stores and clearance of metab-
olites, appears to be curvilinear with much of the

Fig. 4 The torque- and power-pedalling rate relationship in the
fatigue free and fatigued states (e.g. following 30 s maximal cycling).
Because maximum force, maximum shortening velocity and
relaxation rates are collectively impaired by fatigue; there is a
reduction in maximum power (e.g. −56%) and a leftward-shift in the
power-pedalling rate relationship. Accordingly, for a given ‘state of
fatigue’, power production at high pedalling rates is compromised
to a greater extent than at lower pedalling rates (e.g. −78% at 160
RPM vs. −56% at 120 RPM)
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repletion occurring within ~60 s [199]. Muscle oxidative
capacity (i.e. capillary density, mitochondrial content
and oxidative enzyme activity) is likely the most import-
ant factor influencing the recovery time course (i.e.
encompassing metabolite removal, PCr resynthesis and
restoration of cytosolic pH) following maximal fatiguing
efforts [187, 199, 201, 202], although muscle carnosine
content also predicts the rate of recovery of W’ following
hard exercise [199], presumably via an enhanced intra-
myocellular buffering capacity [203]. Muscle oxidative
capacity tends to be lower in fast versus slow fibres [83,
204], and accordingly, the rate of recovery in these fibres
is slower [143].

Developing Fatigue Resistance and Muscle Oxidative
Capacity
Increasing maximal power production is probably the
most effective means to improve sustained power during
brief maximal efforts via an overall increase of the
power-duration relationship [107, 143, 205–208]. Indeed,
reductions in rates of fatigue during ~30-45 s maximal
cycling efforts seem to be difficult to achieve with train-
ing, even in the presence of physiological adaptations
that would be expected to improve fatigue resistance
[146, 147, 207, 209–211]. Nonetheless, addressing fa-
tigue resistance through track- and ergometer-based
sprint interval training (i.e. ‘speed-endurance’ training
involving maximal sustained efforts with complete re-
covery) is probably still necessary to maximise sustained
power production [212, 213]. It could be speculated that
specifically addressing fatigue resistance following im-
provements in maximum power may be necessary to at-
tenuate possible increased rates of substrate depletion
and metabolite accumulation arising from enhanced
metabolic and mechanical power output. An additional
advantage of sprint interval training is an improved
muscle oxidative capacity [213, 214], although specific
aerobic training (e.g. endurance and other interval train-
ing variations) may still be necessary to ensure a suffi-
ciently developed muscle oxidative capacity [213].
Improvements in fatigue resistance from sprint interval

training could plausibly involve changes to enzyme activ-
ity, substrate stores and enhanced buffering of fatiguing
metabolites [146], which may be reflected in an increase
in markers of glycolytic flux (e.g. higher lactate produc-
tion) for a given sprint cycling bout without any changes
to local pH values [207, 211]. Sprint interval training
seems to increase glycolytic enzyme activity which may in-
crease maximal rates of glycolytic energy flux [107, 146,
209–211]. Whilst it may be possible to improve rates of
anaerobic energy supply, it is not clear if supply is a rate
limiting step to performance and rather energy supply
rates seem to be largely demand-driven [20]. Attenuating
the metabolite-induced downregulation of contractile

performance through enhanced buffering may be the most
relevant mechanism for improving fatigue-resistance with
sprint interval training. The accumulation of metabolic
by-products remains an unavoidable consequence of high
rates of anaerobic energy supply and so it is not possible
to entirely ameliorate the subsequent detrimental effects
on contractile function. However, it seems pH regulation
via H+ efflux and buffering is a reasonably modifiable av-
enue for performance enhancement [211]. Training-
induced improvements in pH regulation may be related to
adaptations to membrane transport systems for cytosolic
H+ efflux (i.e. to mitochondria or extracellular buffers)
[193, 215–218]. Monocarboxylate transporters (MCT1
and MCT4) account for most of the myocellular proton
efflux during high intensity efforts [193], and are highly re-
sponsive to training and detraining [218], although less so
in sprint-trained individuals [213].
It is possible that an improved tolerance to acidosis-

related stimulation of type III-IV muscle afferents via re-
peated exposures could allow a better maintenance of
motor drive in the presence substantial discomfort [191].
Whilst pedalling rate markedly influences rates of power
loss within sprint cycling, little evidence is available
identifying the optimal pedalling rate within sprint-
interval training. It has been a common practice within
elite sprint cycling to undertake training at very high
pedalling rates (e.g. small gear track, ergometer or roller
sprints) purportedly to elicit fatigue resistance specific-
ally within the excitation-contraction coupling machin-
ery. In contrast, the recent trend for larger competition
gearing has resulted in faster competition times [219],
and the practice of sprint interval training performed at
low pedalling rates (e.g. large gear track or ergometer
sessions) to elicit a form of ‘strength-endurance’ that
could attenuate fatigue and power loss during sprint
cycling. Based upon the principle of specificity, it
seems intuitive to assume that the pedalling rate used
within sprint interval training would mediate a par-
ticular adaptive response. However, this supposition
has yet to be systematically corroborated. Indeed, a
variety of training modalities, each intended to im-
prove a specific limiting physiological mechanism may
be the optimal approach [220].
Finally, improvements in muscle oxidative capacity can

be readily achieved via traditional endurance and long
interval training [221, 222]. However, excessive attention
to this form of training may compromise the develop-
ment of maximal strength and power [223]. Endurance
training may directly downregulate rates of protein syn-
thesis and inducing a shift towards more fatigue-
resistant but slower MyHC (e.g. IIx → IIa → I) isoforms
[79, 145, 146, 224], or compromise strength and power
training via residual fatigue and/or substrate depletion
[225]. Therefore, training to improve muscle oxidative
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capacity needs to be carefully dosed to mitigate poten-
tially detrimental interference effects. Alternatively,
novel training strategies may be implemented to more
efficiently (i.e. achieving a given adaptive signal for a
smaller dosage) elicit muscle oxidative adaptations.
Emerging evidence indicates that relatively low volume
short-term repeated sprint training (i.e. a protocol which
elicits fast muscle fibre recruitment and high rates of
oxidative flux) performed in hypoxia can induce non-
haematological muscle adaptations associated with en-
hanced muscle glycolytic and oxidative capacities [226,
227]. Specifically, this form of training has been found to
upregulate oxidative and glycolytic enzyme activity,
muscle buffer content and mitochondrial and capillary
density via an activation of the HIF-1α and HIF-2α sig-
nalling cascades [228–230], Similarly, single leg cycling
is a training strategy which elicits an increased mechan-
ical workload and local perfusion per leg during interval
training versus double leg cycling, and subsequently has
been shown to induce greater increases in muscle oxida-
tive capacity in endurance trained cyclists [231]. Al-
though it is not clear if the attenuated central
stimulation from this method may compromise the
maintenance of at least a minimum threshold of central
(e.g. pulmonary diffusion capacity, cardiac output and
oxygen carrying capacity) aerobic qualities. Further re-
search is necessary to clarify the efficacy of hypoxic
training and single leg cycling in improving muscle oxi-
dative capacity in trained sprint cyclists.

Conclusion
Maximal muscular power during cyclic contractions is
limited by force-velocity and activation-relaxation char-
acteristics, fatigue resistance and coordination amongst
joints and muscles [26, 57]. At low cycle frequencies,
maximal force and rate of force development may be
most critical to power production [51], and as frequency
increases to optimal frequency and beyond, maximal
shortening velocity, activation-relaxation kinetics (espe-
cially relaxation) and muscle coordination likely play an
increasingly prominent role [52]. Sprint cyclists operate
at the edge of human potential with regards to maximal
muscular power production, and those that exhibit the
highest levels of maximum and sustained power relative
to their body mass and aerodynamic drag will tend to be
the fastest [1, 23]. Cycling power is a product of pedal-
ling rate and the pedal force (directed normal to the
crank) or torque (at the crank) generated from coordi-
nated actions of the hip, knee and ankle extensors [25,
46]. Force-based determinants of maximum power are
highly trainable [108], and traditional strength training
combined with cycling-based strength and power train-
ing remains the foundation for long term power-
development within sprint cycling. Velocity- and

frequency-based determinants may not be highly modifi-
able with training independent of changes in MyHC
composition [25]. Maximal efforts may need to be sus-
tained for ~15-60s or longer during sprint cycling com-
petition, but a rapid and progressive fatigue-related
power loss is observed almost immediately after max-
imum power is attained [20]. The fatigued state is char-
acterised by impairments in force-velocity properties
and activation-relaxation kinetics, and so a suppression
and leftward shift of the power-pedalling rate relation-
ship occurs [168]. Increasing maximum power and rais-
ing the power-duration relationship is probably the most
effective means of increasing sustained power during
brief maximal tasks. It is unclear if rates of fatigue can
be markedly improved with training even in the pres-
ence physiological adaptations associated with fatigue-
resistance, although sprint interval training may still be
necessary to optimise performance [213]. Traditional en-
durance training methods used to develop muscle oxida-
tive capacity are known to interfere with maximal power
development [145], and so the modality and dosage
needs to be carefully considered. It may be postulated
that a predominance of MyHC IIa fibres in particular
and in combination with longer muscle fascicles (i.e. for
a higher maximal shortening velocity) for a given muscle
cross-sectional area may reflect an optimised phenotype
for the simultaneous expression of maximal power,
fatigue-resistance and muscle oxidative capacity [17, 89,
145], and therefore, sprint cycling performance. These
insights can allow scientists and practitioners alike to
better understand the mechanistic basis of maximal
muscular power production, and subsequently, advance
the limits of human potential within a range of athletic
and health-related disciplines through the application of
appropriate training strategies.
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