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Abstract

Background: Accurate and detailed measurement of a dancer’s training volume is a key requirement to
understanding the relationship between a dancer’s pain and training volume. Currently, no system capable of
quantifying a dancer’s training volume, with respect to specific movement activities, exists. The application of machine
learning models to wearable sensor data for human activity recognition in sport has previously been applied to cricket,
tennis and rugby. Thus, the purpose of this study was to develop a human activity recognition system using wearable
sensor data to accurately identify key ballet movements (jumping and lifting the leg). Our primary objective was to
determine if machine learning can accurately identify key ballet movements during dance training. The secondary
objective was to determine the influence of the location and number of sensors on accuracy.

Results: Convolutional neural networks were applied to develop two models for every combination of six sensors (6, 5,
4, 3, etc.) with and without the inclusion of transition movements. At the first level of classification, including data from
all sensors, without transitions, the model performed with 97.8% accuracy. The degree of accuracy reduced at the
second (83.0%) and third (75.1%) levels of classification. The degree of accuracy reduced with inclusion of transitions,
reduction in the number of sensors and various sensor combinations.

Conclusion: The models developed were robust enough to identify jumping and leg lifting tasks in real-world
exposures in dancers. The system provides a novel method for measuring dancer training volume through
quantification of specific movement tasks. Such a system can be used to further understand the relationship between
dancers’ pain and training volume and for athlete monitoring systems. Further, this provides a proof of concept which
can be easily translated to other lower limb dominant sporting activities

Key Points

� Deep learning models were shown to have
acceptable accuracy when applied to recognised
ballet-specific jumping and leg lifting tasks in a
population of 23 dancers.

� A system of multiple sensors (six per dancer) was
shown to have the greatest accuracy; however, the
optimal single sensor model also performed with
acceptable accuracy.

� The inclusion of all six sensors yielded the highest
degree of accuracy: however, fewer sensors still
provided an acceptable degree of accuracy. For real-

world application, minimal sensors are required to
reduce athlete burden.

� The method demonstrated for model development
is highly translatable for future developments in
other lower limb dominant sporting activities.

Introduction
The quantification of training volumes in sport has sig-
nificantly advanced knowledge regarding the develop-
ment of musculoskeletal pain disorders in athletes [1].
Due to a high prevalence of lower limb and lower back
pain and associated disability in dancers, there is a grow-
ing body of literature focussing on physical training vol-
ume in this population [2–4]. Assessment of dancer
training volumes has been largely derived from subject-
ive, self-reported measures such as schedules and activity
diaries [2, 4], which are imprecise and are frequently
biased [5]. Furthermore, these methods are limited to
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the number of hours of training/performing and do not
account for individual dancer training volume or specific
movements. In quantifying training volume, specific
movements likely to be provocative of pain should be
considered [6], such as jumping and landing, which has
been associated with development of foot/ankle, knee
and lower back pain [7, 8], and lifting the leg to the
front, side or behind the body, which has been associ-
ated with hip and lower back pain [9]. Accurate and de-
tailed measurement of a dancer’s training volume is a
key requirement in understanding the relationship be-
tween training volume and pain disorders. However, no
automated and objective system exists which provides
the sensitivity to measure the training volume of specific
movements performed by individual dancers.
Small, relatively inexpensive, commercially available

wearable sensors have been rapidly adopted in main-
stream sports for the objective quantification of training
volume [5]. Sensor units typically incorporate accelero-
metry technology to evaluate movement magnitudes and
provide an estimation of metabolic demands of sporting
activities [5]. Specific movement tasks may be better de-
tected using inertial measurement units (IMU), which
incorporate accelerometers, gyroscopes and magnetome-
ters allowing for the use of multiple sensor outputs to
identify specific movement tasks [10]. Accelerometers
measure the rate of change of velocity via linear acceler-
ations, and gyroscopes measure orientation and angular
velocity [11]. Magnetometers provide directional infor-
mation, similar to a compass, by measuring magnetic
field strength [11].
Machine learning algorithms, when applied to IMU

data, have provided new insight into the evaluation of
athletic movement demands through the automatic rec-
ognition of sport-specific movements, ‘human activity
recognition’ (HAR) [12]. Machine learning algorithms
learn from data and can perform better than manually
hard-coded rules for complex problems. For example,
machine learning algorithms have been applied to data
from a single wrist-worn IMU in tennis, demonstrating
an accuracy of 97.4% when classifying three different
tennis strikes [13]. Accuracy reduced to 93.2% when
nine different types of tennis strikes were included in
the algorithm [13], suggesting that machine learning
performance reduces with greater levels of feature classi-
fication. Further, a manufacturer developed algorithm
for detecting jumps during volleyball using a sacrum
mounted sensor, with an average precision (accurate de-
tection of relevant events) and recall (accurate rejection
of irrelevant events) of 99.8% and 87.9%, respectively
[14], as well as with excellent specificity and sensitivity,
correctly identifying 96.8% of the jumping activities and
100% of non-jumping activities, with no false negatives
[15]. These results suggest that there is great potential

for HAR using IMU in dance to provide specific auto-
mated means of quantifying dance-specific movements.
Recently, more sophisticated machine learning tech-

niques have been developed, such as deep learning for
HAR [16, 17]. Deep learning models are able to auto-
matically learn features from raw data and are often able
to achieve better performance than traditional machine
learning because their added complexity allows the
models to take greater advantage of larger and more
complex training datasets [16]. A convolutional neural
network (CNN) is a deep learning technique commonly
used for image classification and object detection and
can be applied to any type of ordered data such as wear-
able sensor data (time series) for HAR [16].
The placement and number of sensors utilised can in-

fluence accuracy of HAR [18]. Within HAR, the inclu-
sion of multiple sensors at specific locations can impact
the accuracy of classification, as well as the variety of ac-
tivities that can be detected [18]. However, wearing mul-
tiple sensors is burdensome for the athlete. As a result,
researchers aim to achieve a minimum number of sen-
sors while still developing HAR models with the highest
possible degree of accuracy [18].
Ballet is an art form founded by a number of specific

movement activities. Repeated jumping and leg lifting
tasks are common ballet movements that have been as-
sociated with the development of pain disorders [19, 20].
Within a single ballet class, dancers can perform over
200 jumps, with a large variety of biomechanical de-
mands and over half of which land unilaterally [20].
Similarly, dancers may lift their leg to the front, side or
behind the body and the speed and pathway of the leg
movement depends upon the specific activity they are
performing [21, 22]. Finally, activities in ballet are rarely
performed in isolation; instead, they are dictated by their
preceding and proceeding movements, which can be
termed transitions. Currently, it is unclear as to whether
transitions have been incorporated into HAR models for
sporting activities. However, when applied to ballet, a
HAR model needs to recognise specific activities while
also accounting for the large, within activity variations
and consider transitions.
While there is a growing body of literature supporting

the use of machine learning for activity recognition in
sports [12, 17], based on review of the literature, to our
knowledge, there are no reports of a machine learning
approach to assist in quantifying ballet specific move-
ment tasks. Thus, the purpose of this study was to de-
velop a HAR system using wearable sensor data to
accurately identify key ballet movements (jumping and
lifting the leg), allowing for objective quantification of
training volume in ballet. Our primary objective was to
determine if machine learning can accurately identify
key ballet movements during dance training. The
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secondary objective was to determine the influence of
the location and number of sensors on accuracy.

Methods
Participants
We recruited 23 female pre-professional dancers (mean
(SD) age, 19.6 (1.2) years) from a university dance insti-
tution. Dancers were included in the study if they were
currently enrolled in one of the full-time vocational
dance training programmes at the institution, uninjured
at the time of data collection and were participating in a
minimum of 8 hours of ballet training per week. Only fe-
male dancers were recruited for this study as the move-
ment profile of females and males are different in ballet,
where many dance movements are gender specific, and
there are differences in the biomechanics demonstrated
between males and females [23, 24]. Additionally, there is
greater female participation at a pre-professional level.
Dancers were excluded from the study if they were cur-
rently injured or unwell. This study was approved by the
university’s human research ethical committee (HRE2017-
0185) with reciprocal ethical approval from the dance
institution. Informed consent was obtained from all indi-
vidual participants included in the study.

Data Collection and Tasks
Data collection took place in groups of 2 to 5 dancers
within a standard ballet studio, equipped with a com-
mon sprung dance studio floor. Following a self-
directed warm-up and attachment of sensors, dancers
performed a series of discrete movement tasks com-
monly performed within classical ballet, jumping and
leg lifting tasks (see Tables 1 and 2), i.e. the tasks
were performed in isolation rather than embedded
within a choreographed sequence. The jumping and
leg lifting tasks were selected to reflect the movement
sequences performed within a typical ballet class and
were performed in the same order by all dancers.
Jumping tasks incorporated small jumps and large
jumps, landing bilaterally and unilaterally, on the right
and left leg. The leg lifting tasks were performed to
the front, side and behind the body, on the right and
left leg. To allow for movement variability between
the tasks, timing, magnitude and arm movements for
the discrete movement tasks were determined by the
dancers, reflecting normal practice. These tasks were
then performed within specified choreographed se-
quences and to music, typical of a normal ballet class.
The discrete tasks, including the order they were per-
formed in, and examples of choreographed sequences
are detailed in Table 2. Data collection for each dan-
cer took approximately 45 min.

Instrumentation/Sensors and Video
Dancers wore six ActiGraph Link wearable sensors
(ActiGraph Corporation, Pensacola, FL), operating at
100 Hz and with the gyroscope and magnetometer en-
abled. The Actigraph Link is a small commercially avail-
able triaxial wearable sensor which integrates data from
an on-board accelerometer, gyroscope and magnetom-
eter. The ActiGraph sensors were secured to the skin
using a double-sided tape and a single piece of hypo-
allergenic tape covering at the anatomical locations as
shown in Fig. 1. Sensors were placed on the thoracic
spine (used in previous sporting activity recognition re-
search [25–27]), sacrum (recommended as this is close
to an individual’s centre of mass [18]) and lower limbs
(to capture lower limb movement). On the lower limbs,
sensors were placed bilaterally in order to detect the dif-
ferent asymmetrical movements of dance. Both thigh
and shin sensors were placed on each lower limb as the
shin would likely provide a larger amplitude of acceler-
ation due to the larger axis of rotation (particularly in
leg lift tasks), thus providing different information for
the HAR model development. Additionally, dancers were
simultaneously video recorded using a GoPro Session 5
(GoPro. Inc., USA), capturing 100 frames per second.

HAR System Development
The process of developing the HAR system is described
in detail below [28].

Data Preparation
Following data collection, the ActiLife software (version
6.13.3) was used to output date-time stamped files of

Table 1 Levels of classification for movement tasks

Jumping tasks: levels of classification

Movement (1) Jump type (2) Laterality (landing leg) (3)

Jump Bilateral landing small jump Bilateral

Unilateral landing small jump Right

Left

Unilateral landing large jump
(leap)

Right

Left

Leg lifting task: levels of classification

Movement (1) Direction of leg lift (2) Laterality lifted leg (3)

Leg lift Front Right

Left

Side Right

Left

Back Right

Left

Other—used only for models when transitions included
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each wearable sensor’s raw data including triaxial accel-
erometer, gyroscope and magnetometer outputs.
The video data was manually annotated frame by

frame by a ballet expert to identify and classify the spe-
cific movements at 3 levels (see Table 1). The first level
of classification determined if the dancer was performing
a jump or a leg lifting task. At the second level of classi-
fication, jumps were identified based upon size (smaller
jumps or large leaps) and whether they landed bilaterally
or unilaterally. Smaller jumps included both bilateral
and unilateral landings, whereas all large leaps land uni-
laterally. At the second level of classification, leg lifting
tasks were classified by the direction (front, side or
back). The third level of classification described laterality

of the tasks, i.e. whether the dancer was landing on the
right or left leg during unilateral jumping tasks and whether
they were lifting their right leg or left leg during leg lifting
tasks. Movements that dancers performed that were not
these specific movements were left without annotation and
considered ‘other’ at all 3 levels of classification.
A customised LabVIEW program (LabVIEW 2017

SP1, National Instruments, Austin, TX, USA) was used
to synchronise and merge the six sensor files with the
video-based specific movement annotation file. Time
synchronisation was based on a standardised movement;
dancers were instructed to stand still for 5 s, then per-
form a double leg heel raise and then stand still for an-
other 5 s at the beginning of data collection. This

Table 2 Order and description of discrete ballet movement tasks and example of choreographed sequences

Ballet movement Description

Leg lifting tasks

Grands battements (devant, a la
seconde, derriere)

In a controlled, large amplitude tossing or throwing action, the dancer flexes at the hip to bring the lower
limb with the knee held in extension to the front of the body 3 times in succession closing into fifth
position each time. The dancer then repeats this movement to the side of the body and then behind the
body (hip and lumbar spine extension). This is repeated on the other leg.

Develloppe (devant, a la seconde,
derriere)

In a slow, controlled unfolding movement, the dancer lifts the leg to the front of the body. This is repeated
to the side and the back. This is repeated on the other leg. This is repeated 3 times.

Battement Lente (devant, a la
seconde, derriere)

In a slow, controlled movement, the dancer lifts the leg to the front of the body, maintaining knee
extension. This is repeated to the side and the back. This is repeated on the other leg. This is repeated 3
times.

Jumping tasks

Sauté in first position The dancer commences in first position of the feet (lower limbs externally rotated and heels placed
together) and performs 8 vertical jumps landing bilaterally.

Changement in fifth position The dancer commences in fifth position of the feet (lower limbs externally rotated and feet crossed) and
performs 8 vertical jumps changing the front foot upon landing.

Entrechat Quatre The dancer commences in fifth position of the feet (lower limbs externally rotated and feet crossed) and
performs 4 vertical jumps beating the legs in air before landing bilaterally with the same foot in front. This
was performed with the right leg and left leg starting in front.

Assemblé The dancer commences in fifth position and swishes one leg out to the side as they take off, they gather
the legs in the air together and land before immediately taking off for the next jump. This is repeated 6
times.

Jeté ordinaire The dancer commences in fifth position and swishes one leg out to the side as they take off, they then land
on the limb that they swished to the side. This is repeated 8 times.

Temps levé A single leg vertical jump and land performed 5 times in succession

Grand Jeté en avant A big leap. To prepare for the movement, the dancer performed a travelling sequence to generate
momentum, as they would normally do within a dance class. This was repeated 2 times on each leg.

Grand Jeté en tournant A big leap turning the body in the air. This was repeated 3 times on each leg

Choreographed sequence example

Slow leg lift sequence Develloppe devant with right leg, lower the leg to pass through first position to lift into battement lente
derriere. Lower the leg into fifth position.
Develloppe the left leg a la seconde. Carry the leg, still lifted to derriere. Hold the leg lift derriere and
pivot the body slowly 360°.
Once returned to original positon, close in 5th position. Travelling step into a pirouette.

Jump sequence Travelling step to the right, jeté ordinare to the right, temps levee
Travelling step to the left, jeté ordinare to the left, temps levee
Travelling step to the right, jeté ordinare to the right, temps levee
Travelling step to the left, assemble
Remaining on the floor rise up on toes from bent knee position. Three changements changing direction on
each on to turn 360°

Bold indicates movements for classification and italics indicate transition movement
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generated an accelerometry signal which was similar on
all sensors, with a period of stillness on either side which
could be used for visual synchronisation with the video
data. Following synchronisation, unwanted data was re-
moved. Unwanted data were time periods where dancers
were not performing the discrete movement tasks or
choreographed sequences of movements. This included
periods such as breaks, when dancers were being
instructed on what movements to perform, as well as
short practice sessions performed by the dancers.

Segmentation
The data was segmented at a fixed window size of 100
frames to align with the 100-Hz sensor and 100-fps
video data, resulting in the dataset being split into 1-s
segments of data. Additionally, overlapping segments
were created in order to capture enough data for detect-
ing events near the window boundaries. An overlap size
of 75% was used as it achieved better results compared
with other sizes (0%, 25% and 50% were tested).

Feature Extraction
Initial experimentation was performed, extracting a
number of time and frequency domain features

commonly used in HAR with wearable sensors [10, 29,
30], such as calculating the average and median signal
values for various time segments and discrete cosine
transforms. These features were used with a number of
machine learning approaches including, but not limited
to, logistic regression, random forests, support vector
machines and shallow neural networks. However, these
approaches did not achieve satisfactory results. CNNs
were therefore used to learn and extract features auto-
matically from the dataset [16].

Feature Selection
Exhaustive feature selection was applied in order to
evaluate all location combinations of sensors for training
our models.

Classification
A number of CNN architectures were experimented
with, using different numbers of layers, filters, filter sizes,
activation functions and combinations of convolution
and pooling layers. The filter size (layer 1, 25 horizontal,
9 vertical; layer 2, 10 horizontal, 9 vertical) for the con-
volution layers was selected to allow for filters to learn
for each sensor location at a time, i.e. filters to be learnt

Fig. 1 Wearable sensor locations
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for the left shin x, y and z along with the accelerometer,
gyroscope and magnetometer all at once and then the
next sensor location would be learnt. The optimisation
algorithm applied to the entire model was the adaptive
momentum (Adam) algorithm [31]. Further detail on
model architecture can be seen in Additional file 1.
Two models were developed for each possible sensor

combination, first without the consideration of transition
movements and the second with the consideration of
transition movements. Data that was annotated as ‘other’
was considered transition movement.

Determining Model Performance/Statistical Testing
The performances of the models were evaluated using a
leave-one-out cross-validation method [30]. In the leave-
one-out cross-validation, the classification model is
trained on data from all of the participants except one,
which is ‘held out’ and used as the test dataset. The
process is repeated until all participants have served as
the test data, and the performance evaluation results are
averaged [30].
To explore the primary aim, determining the perform-

ance of the model in detecting the movement tasks, the
models were evaluated using all six sensors, at each of
the three levels of classification. The models developed
without consideration of transition movements allowed
comparisons with existing literature, while the addition
of transitions allows for greater ecological validity [32].
To explore the secondary aim, determining to what ex-
tent the number and location of sensors affect perform-
ance of the model, the model was evaluated using all
other possible sensor combinations (i.e. all possible com-
binations for five sensors, four sensors, three sensors,
etc.) at each of the three levels of classification. This
allowed determination of the best combination for each

number of sensors. To interpret the performance of
the models, confusion matrices were constructed for
each participant with every combination of sensors
and averaged across the population. The components
of a confusion matrix are demonstrated in Fig. 2.
This was used to calculate the degree of accuracy for
each model in classifying the movements at each of
the three levels of classification for all sensor
combinations. Accuracy was calculated by the sum of
the true positive and true negative divided by the
total [13].

Results
All Six Sensors
At the first level of classification, including all six sen-
sors, the model without transitions performed with
97.8% accuracy. The degree of accuracy reduced at the
second and third levels of classification to 83.0% and
75.1%, respectively. When transitions were included, the
performance of the model reduced to 84.2% accuracy at
the first level of classification, 77.1% at the second level
and 73.5% at the third level.

Different Sensor Combinations
Without transitions, the model performed with a high
degree of accuracy at the first level of classification re-
gardless of the number of sensors the dancer was wear-
ing (see Table 3). At the second and third levels of
classification, there were reductions in performance of
the model with reduced sensors regardless of the sensor
combination (see Table 3).
A similar trend existed when transitions were applied

(see Table 4).

Fig. 2 Components of a confusion matrix
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Discussion
Using triaxial accelerometer, magnetometer and gyro-
scope outputs of six wearable sensors, a CNN model
was trained to identify dance-specific jumping and leg
lifting tasks at three different levels of classification.
Models based on data without transitions performed
superiorly to models which considered transition
movements. There was a gradual reduction in model
performance with increased levels of classification and
performance also reduced with reduced sensor numbers
and for different sensor location combinations.
At the first level of classification, determining if the

dancer was jumping or lifting their leg, using all six sen-
sors and not including transitions, the model developed
in this study performed superiorly to previously devel-
oped HAR algorithms in sport [10, 12, 17, 33], with an

average degree of accuracy of 98.2%. Convolutional
neural networks have previously been applied to a single
wearable sensor’s accelerometer output to identify 10
different specific strikes in beach volleyball at a single
level of classification with a lower classification accuracy
of 83.2% [33]. The results of the current study are closer
to those of machine learning programmes which have
been developed for the recognition of bowling tasks in
cricket (99% specificity and 98.1% sensitivity) [25] and
tackles in rugby (97.6% accuracy) [27]. While
manufacturer-developed algorithms have been developed
to detect jumping on other sporting populations with
similar accuracy, these have not been validated in dance-
specific jumps [14, 15]. Further, they only detect jump-
ing movements and not activities [14]. Therefore, the
current study provides a system to detect specific dance

Table 3 Degree of accuracy for different sensor combinations at all three levels of classification—without transitions

Level 1 Level 2 Level 3

Number of sensors (number of
possible sensor combinations)

Accuracy score
mean (range)

Best Worst Accuracy score
mean (range)

Best Worst Accuracy score
mean (range)

Best Worst

5 (6) 98.2%
(98–98.5%)

L shin
L thigh
R shin
R thigh
Sacrum

L thigh
L shin
R thigh
Sacrum
Thoracic

81.8%
(81.3–81.8%)

L shin
L thigh
R shin
R thigh
Sacrum

L shin
L thigh
R thigh
Sacrum
Thoracic

74.9%
(74.1–76.3%)

L shin
L thigh
R shin
R thigh
Sacrum

L shin
L thigh
R thigh
Sacrum
Thoracic

4 (15) 98.1%
(97.8–98.4%)

L shin
L thigh
R shin
R thigh

L thigh
R shin
R thigh
Sacrum

81.3%
(79.3–82.4%)

L shin
R shin
R thigh
Sacrum

L shin
L thigh
Sacrum
Thoracic

73.8%
(71.8–75.1%)

L shin
R shin
R thigh
Sacrum

R shin
R thigh
Sacrum
Thoracic

3 (20) 98%
(97.6–98.2%)

L shin
R thigh
Sacrum

R shin
Sacrum
Thoracic

79.5%
(73.7–81.7%)

L shin
R shin
Sacrum

L shin
L thigh
Thoracic

72.0%
(65.2–74.5%)

L shin
R thigh
Sacrum

L shin
L thigh
Thoracic

2 (15) 97.7%
(97.2–98.1%)

L shin
R thigh

Sacrum
Thoracic

75.8%
(69.7–80.2%)

L shin
R thigh

L shin
L thigh

68.0%
(61.5–72.5%)

L shin
R thigh

L shin
Thoracic

1 (6) 97.3%
(97–97.7%)

R thigh R shin 67.1%
(60.2–76.5%)

Sacrum Thoracic 56.5%
(38.0–65.3%)

Sacrum Thoracic

Table 4 Degree of accuracy for different sensor combinations at all 3 levels of classification—with transitions

Level 1 Level 2 Level 3

Number of sensors (number of
possible sensor combinations)

Accuracy score
mean (range)

Best Worst Accuracy score
mean (range)

Best Worst Accuracy score
mean (range)

Best Worst

5 (6) 84%
(83.6–84.4%)

L shin
L thigh
R shin
R thigh
Thoracic

L thigh
L shin
R thigh
Sacrum
Thoracic

76.2%
(75.9–76.6%)

L shin
L thigh
R shin
R thigh
Thoracic

L shin,
L thigh
R shin
R thigh
Sacrum

73.6%
(73.2–74%)

L shin
L thigh
R shin
R thigh
Sacrum

L shin
L thigh
R shin
R thigh
Thoracic

4 (15) 83.4%
(82.5–84.0%)

L shin
R shin
R thigh
Sacrum

L shin
L thigh
Sacrum
Thoracic

75.3%
(74.5–75.9%)

L shin
R shin
R thigh
Thoracic

L shin
L thigh
Sacrum
Thoracic

73.0%
(71.5–74%)

L shin
L thigh
R shin
R thigh

L shin
L thigh
Sacrum
Thoracic

3 (20) 82.9%
(82.1–83.6%)

L shin
R shin
Thoracic

L shin
L thigh
Sacrum

73.9%
(70–75.4%)

L shin
R shin
Sacrum

L shin
L thigh
Thoracic

71.6%
(67.1–73.3%)

L shin
R shin
R thigh

L shin
L thigh
Thoracic

2 (15) 82.1%
(81.2–82.9%)

L shin
R high

L shin
Thoracic

71.2%
(67.3–74.4%)

L shin
R thigh

L shin
Thoracic

68.5%
(64–71.8%)

L shin
R thigh

L shin
Thoracic

1 (6) 80.6%
(78.0–81.6%)

R thigh Thoracic 64.7%
(58.5–70%)

Sacrum Thoracic 61.0%
(47.4–67%)

Sacrum Thoracic
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movements for training volume monitoring in dance
that is as robust as that being used for movement meas-
urement in elite sport.
As expected, the inclusion of transition movements re-

duced the accuracy of the model at the first level of clas-
sification (mean accuracy 84%). To our knowledge, no
previously developed HAR models and algorithms have
applied transition movements in the development of
their models within sport. The inclusion of transitions is
more ecologically valid as movement is rarely performed
discretely, rather within the context of the sport or activ-
ity they are part of [32]. While the application of transi-
tions reduced the accuracy of the model, developing a
model with transitions will likely promote superior real-
world performance of the system [32]. With this in
mind, we contend that future system developments
should include transition movements within the model
development. As a result, the remainder of this discus-
sion will reflect the results including transitions.
The degree of accuracy reduced with increasingly

complex classification levels, from 84.2% at the first
level, to 77.1% at the second and 73.6% at the third
level. This supports previous findings of diminishing
accuracy with increasing complex classifications dur-
ing tennis (97.4% at level 1 and 93.2% at level 2) [13].
While there are currently no thresholds defined in
terms of acceptability in degree of accuracy, a poten-
tial error rate of between 15.8% at the first level of
classification and 22.9% at the second level is still su-
perior to self-reported measures which can have er-
rors of up to 36.9% [34].
The HAR system presented included three levels of

classification, providing additional critical information
that is not reflected in training schedules [2], nor in
manufacturer-developed algorithms for jump detection
[14, 15]. At the second level of classification, the jump-
ing tasks were classified based upon jump size and
whether the dancer landed bilaterally or unilaterally.
This information may be pertinent given that during
unilateral landings, the substantial ground reaction
forces evident in dancers are absorbed by a single leg
[20], imposing greater risk towards musculoskeletal pain
development [35]. The leg lifting tasks were categorised
according to leg lift direction. This might help inform
musculoskeletal risk, given that repeated leg lifting tasks
to the front and side of the body have implications for
the development of hip pain, while repeated leg lifting
tasks behind the body have implications for the develop-
ment of back pain [19]. At the third level of classifica-
tion, laterality was identified with jumps and leg lifts,
with an accuracy of 73%. Of note, this is the first HAR
system developed that includes laterality. Despite the
overall decreased accuracy of the HAR with increased
classification, this detailed information may provide

critical insights to better understanding the relationship
between training volumes and musculoskeletal pain in
this population.
Our results demonstrate diminished accuracy with de-

creased number of sensors, particularly at the second
and third levels of classification. It is likely that this was
due to a greater number of potential activities that were
being recognised at these levels, thus reducing the size
of the dataset for each activity, and also looking at the
activities in greater detail. Interestingly, the best sensor
combination for 5, 4, 3 and 2 sensors all included the
right thigh and left shin sensors. We believe that this is
because of the, largely, lower limb dominant and asym-
metrical nature of ballet movements, where bilateral sen-
sors located in different locations would provide varying
information to a HAR model. Thus in future HAR
model developments, sensor location on each lower limb
should be considered.
Wearing multiple sensors can be burdensome to the

dancer, as well as require greater equipment, data collec-
tion and processing demands [32]. Additionally, the aes-
thetics of ballet focus on clean, unimpeded movements
and line of the leg and torso, in both training and per-
formance settings [36]. It is unlikely that an elite dancer
or athlete would regularly wear six sensors and within
other sports a single upper back worn sensor is more
common [25, 27]. Our study demonstrated a single sen-
sor worn on the upper back having the poorest accuracy.
This may be due to the nature of the tasks considered
which are lower limb dominant, and dancers maintain
an upright posture through the thorax. Our results do
however indicate that a single sensor worn on the
sacrum would allow for reasonable accuracy in detecting
the movement tasks of interest to this study, at the first
and second levels of classification (81.5% and 70%, re-
spectively). This may be optimal, as a single sensor on
the sacrum is easily concealed providing scope for the
use of the sensor system without detracting from the
traditional aesthetic lines created in classical ballet, nor
impeding the dancers’ movement.

Strengths and Limitations
This system can be used to measure a dancer’s training
volume with regards to multiple specific movement
tasks, providing coaches, medical staff and dancers with
information for training volume monitoring and implica-
tion for pain development. The accuracy achieved by the
models is promising with the strengths being the dance
population the models were developed on and ecological
validity of the data collected. The dancers involved in
the study represented a cross-section of pre-professional
dancers enrolled in a university pre-professional dance
programme, inclusive of both classical ballet and con-
temporary dance majors, thus displayed a range of
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differences in technical abilities. The benefit of this is
that the HAR system should be generalisable to a range
of pre-professional dancers with varying abilities; how-
ever, the system may not be accurate in activity recogni-
tion for either less experienced dancers or more
experienced, professional dancers. Additionally, the in-
clusion of transition movements allows for greater real-
world application of the HAR system.
This HAR system was limited to the recognition of jump-

ing and leg lifting tasks and developed using only a female
population of dancers. Further development of a system to
measure training volume in dancers should include a
greater variety of movement tasks such as pirouettes, pointe
work and travelling phrases of movement. Such develop-
ment should also include male dancers, considering specific
movements that have been associated with the develop-
ment of pain in male dancers, such as partnering work, lift-
ing and jumping. As technological advances in wearable
sensors continue, embedded sensors in dancers’ footwear
and attire may also promote further opportunity.
While the models in the current study are developed

to recognise dance-specific movement tasks, the meth-
odology demonstrated is transferrable and generalisable
for HAR of other lower limb dominant sporting activ-
ities, such as kicking in Australian football and soccer,
or specific jumping tasks demonstrated during athletics
and basketball. A limitation of the developed CNN
model is that we are unable to determine the contribu-
tion of specific sensor types (accelerometer, magnetom-
eter and gyroscopes) in recognising the activities.
Further model development could be performed using
only specific selections of the different sensor data from
specific locations, for example using only magnetometer
data from the sacrum sensor and gyroscope data from
the thoracic sensor. However, this would involve the
training and evaluation of many thousands of models.
However, our results highlight the importance of the in-
clusion of transition movements in HAR model develop-
ment and also consideration of activities at multiple
levels of classification, allowing for further insight on the
specific workloads that athletes are exposed to within
training and competition.

Conclusions
A HAR model developed with transition movements
was robust enough to identify jumping and leg lifting
ballet tasks in real-world exposures. Further, the HAR
model could provide some indication of size of the
jumps, whether the dancer was landing bilaterally or
unilaterally and the direction that the dancer was lifting
the leg. While the use of all six sensors provided the
most accurate identification, fewer sensors still provided
a respectable degree of accuracy in detecting the specific
tasks. Further, this model of HAR could be applied to

other sports to more accurately assess exposures and
thus better understand mechanisms of performance and
musculoskeletal pain conditions.
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