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Abstract

The ability to predict the systematic decrease of power during physical exertion gives valuable insights into health,
performance, and injury. This review surveys the research of power-based models of fatigue and recovery within
the area of human performance. Upon a thorough review of available literature, it is observed that the two-
parameter critical power model is most popular due to its simplicity. This two-parameter model is a hyperbolic
relationship between power and time with critical power as the power-asymptote and the curvature constant
denoted by W′. Critical power (CP) is a theoretical power output that can be sustained indefinitely by an individual,
and the curvature constant (W′) represents the amount of work that can be done above CP. Different methods and
models have been validated to determine CP and W′, most of which are algebraic manipulations of the two-
parameter model. The models yield different CP and W′ estimates for the same data depending on the regression
fit and rounding off approximations. These estimates, at the subject level, have an inherent day-to-day variability
called intra-individual variability (IIV) associated with them, which is not captured by any of the existing methods.
This calls for a need for new methods to arrive at the IIV associated with CP and W′. Furthermore, existing models
focus on the expenditure of W′ for efforts above CP and do not model its recovery in the sub-CP domain. Thus,
there is a need for methods and models that account for (i) the IIV to measure the effectiveness of individual
training prescriptions and (ii) the recovery of W′ to aid human performance optimization.

Keywords: Human performance modeling, Fatigue, Time to exhaustion, Energy expenditure, Recovery, Critical
power

Key Points

� Mathematical models of human energy expenditure
and recovery present opportunities in quantifying,
evaluating, and optimizing performance.

� Established models are focused on energy
expenditure and the available models that focus on
recovery need refinement to be used in real-time
performance optimization.

� Existing models derived from group data neglect the
intra-individual variability (IIV) which is critical in
evaluating improvements and optimizing perform-
ance at the individual level.

Background
The study of human fatigue and energy expenditure,
and to a lesser degree recovery, has been a focal area
of research since the early 1900s. Seminal works in
the fields of exercise physiology and performance
modeling by A. V. Hill [1], Monod and Scherrer [2],
and Ward-Smith [3] have laid the groundwork for
modeling energy expenditure during prolonged exer-
tion. Recently, researchers have developed formal
mathematical models that aid in better management
of performance and push limits of human endurance.
Most available models have originated from cycle erg-
ometer tests [4] due to the ease of measuring power
in cycling and then applied to other forms of exercise
like running [5], swimming [6], and rowing [7]. Add-
itionally, most of these models focus on energy exer-
tion with only a few publications that focus on
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energy recovery, which could give us valuable insight
into the physiological underpinnings of fatigue, recov-
ery, and ultimately optimizing performance. Further-
more, developing models of human performance and
fatigue lead to applications such as mission planning
of soldiers and investigating the influence of physical
activity on cardiovascular and overall health of a hu-
man being.
The purpose of this review is to survey the available

literature and summarize all the existing power-based
models of human performance. Additionally, this review
will identify potential research opportunities to advance
the field of human performance in terms of modeling in-
dividual variance seen in performance metrics, expend-
iture and recovery models of work capacity, the
potential use of performance models in team sports, the
influence of exercise on health, and the use of wearable
sensors in mitigating the dependency on laboratory
equipment.

Main Text
Modeling Performance Using Power
There are several definitions of fatigue across re-
searchers that limit the ability to measure and de-
velop mathematical models [8, 9]. For the purpose of
this manuscript, fatigue is defined as an exercise in-
duced progressive loss of the ability to sustain max-
imum power (energy exertion) over a desired
duration of time [8–12]. Thus, fatigue is a dynamic
process that leads to a drop in the required exercise
intensity, which eventually leads to termination of
exercise due to exhaustion [13–17]. Exercise inten-
sity is generally categorized as severe, heavy, or
moderate [18, 19] based on blood lactate levels [20],
maximum oxygen uptake (V̇O2max) [21, 22], or
power output [22]. Maximal lactate steady state
(MLSS) is often used to categorize exercise intensity,
which is defined as the highest blood lactate concen-
tration that can be maintained without further accu-
mulation during sub-maximal work [23, 24]. The
exercise intensity associated with MLSS indicates the
highest intensity that can be supported by aerobic
mechanisms [23, 25]. Several methods have been de-
veloped to determine MLSS; however, all of them in-
volve taking blood samples and measuring the
lactate concentration. Critical power (CP), a theoret-
ical power level which a human can maintain indef-
initely [2], is shown to be in close vicinity to the
power at which MLSS occurs [26–28]. Moreover, the
oxygen uptake (V̇O2) and blood lactate levels have
been shown to attain a steady state during exercise
below CP and hence can be classified as either mod-
erate (below lactate threshold) or heavy (from lactate
threshold to CP) intensity [22, 29]. However,

exercise above CP is categorized as severe intensity
because V̇O2 and blood lactate levels cannot attain a
steady state [22]. Thus, CP represents the boundary
between heavy and severe intensity exercises [30]
and provides a convenient and non-invasive way of
determining exercise intensity [22, 29]. Furthermore,
researchers opine that CP could be the most import-
ant fatigue threshold to determine exercise intensity
and is the gold-standard to determine the maximal
metabolic steady state compared to other parameters
such as MLSS, %V̇O2, lactate threshold (LT), or gas
exchange threshold (GET) as it enables population
level standardizations [17, 31].
The critical power concept was introduced by

Monod and Scherrer [2] using a linear relationship
between total work done and time-to-exhaustion.
Monod and Scherrer’s work was based on A. V.
Hill’s [1] observations pertaining to athletic records
in different sports. Monod and Scherrer coined the
terms critical power (CP) and limit work (WLim).
They defined CP as the power output that an ath-
lete can generate indefinitely and WLim as the total
work done until exhaustion at a constant work-rate
above CP related by a linear relationship given by:

W Lim ¼ aþ b � tLim ð1Þ
where “a” is an energy reserve in the units of work

(Joules) and the constant “b” is the critical power in
Watts, and tLim is time-to-exhaustion in seconds. Monod
and Scherrer derived a hyperbolic form for tLim by sub-
stituting WLim as:

W Lim ¼ P � tLim ð2Þ
Using Eq. 2 and transforming Eq. 1 as:

tLim ¼ a
P−b

ð3Þ

where P is power in watts. Moritani and colleagues [4]
extended the critical power concept to cycling using a
series of cycle ergometry tests and called the term “a” as
anaerobic reserve deriving the linear relationship be-
tween P and 1/tLim from Eq. 3 given by:

P ¼ a
tLim

þ b ð4Þ

Whipp and colleagues [32] then fit a hyperbolic curve
between P and tLim with a time asymptote at a power
level that is equal to CP and denoted the anaerobic re-
serve term as W′. The anaerobic reserve term W′ has
since been referred to as anaerobic work capacity
(AWC), and these two terms have been used inter-
changeably. However, it has been shown that W′ is not
equal to AWC and the two terms should not be used
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interchangeably [17, 33]. Additionally, it should be noted
that W′ (pronounced W prime) may lead to confusion
in mathematical modeling as it is common notation to
use “prime” to represent the first derivative with respect
to time. Rewriting Eq. 4 by replacing “a” with W′ and
“b” with CP yields the following relationship:

P ¼ CP þ W 0

tLim
ð5Þ

Equation 5, widely regarded as the two-parameter
model, has been transformed to its linear form, first
seen in [4] and later in [2, 34–36], by plotting
power versus 1/tLim with CP and W′ representing
the y-intercept and slope respectively as shown in
Fig. 1. The CP concept has been applied to running
[5], swimming [6], and rowing [7] with analogous
parameters such as critical velocity (CV) and dis-
tance capacity (D′) instead of CP and W′
respectively.
A limitation of the CP concept described by Eq. 5

is that as tLim approaches 0, P tends to infinity (see
Fig. 2). This is not realistic as there is a limit to the
instantaneous maximum power that a human can
produce [37, 38]. Moreover, Josephson [39] states
that the maximum power output for a muscle oc-
curs at 30% of its maximum shortening velocity
(Vmax). It takes a short duration of time for the
muscle to reach 0.3 Vmax starting from rest. There-
fore, it may beneficial to define the instantaneous
maximum power as the average power-output for
one crank rotation [40]. Additionally, some

publications have reported that the average duration
for which the CP can be maintained is less than an
hour [41–44], while others have reported that it can
be maintained for approximately over an hour [45,
46]. D. W. Hill [35] suggests that the end point of
the tests proposed to the subjects in these studies,
i.e., 24–30 min in [47, 48] and 60–90 min in [41, 45]
may have influenced the outcome.
Ward-Smith [3] proposed a model to address these

limitations that was able to predict sprint perform-
ance between 100 m and 10,000 m. Ward-Smith’s

Fig. 1 The two-parameter model. a The hyperbolic form and b the linear transformation with critical power (CP) as the y-intercept and curvature
constant (W′) as the slope

Fig. 2 The two-parameter model and its limitations. As tLim tends to
0, P tends to ∞, and critical power (CP) is the power asymptote at
tLim = ∞
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model was derived from the first law of thermody-
namics incorporating both the anaerobic and aerobic
contributions to the power generated given by:

P tð Þ ¼ Pmax−Rð Þ � e −λ�tð Þ þ R ð6Þ
where Pmax is the maximum available power from the

anaerobic mechanism, R (analogous to CP) is the max-
imum rate of energy release (power) from the aerobic
mechanism, and λ represents the decay of power with
time t. Equation 6 is a simplified version of the model
presented by Ward-Smith. The complete version can be
found in [3]. Hopkins and colleagues [49] proposed a
similar model for treadmill running with inclinations in-
stead of power given by:

It ¼ I∞ þ I0−I∞ð Þ � e −t=τð Þ ð7Þ
where It is the inclination at time t, I∞ is the inclin-

ation that corresponds to infinite time (similar to CP), I0
is the instantaneous maximum inclination (synonymous
with Pmax), and τ is a time constant.
Peronnet and Thibault [50] built on Ward-Smith’s

work and proposed a model to predict race perfor-
mances in the range of 60 m to a full marathon. Their
main assumption was that the maximum aerobic power
(analogous to CP) is sustainable for approximately 7 min
as opposed to indefinitely as suggested by Eq. 5. The
model is given by:

PT ¼ S
T

1−e −T=k2ð Þ
h i

þ 1
T

ZT

0

BMRþ B � 1−e −t=k1ð Þ
� �h i

dt

ið ÞT < TMAPf S ¼ A
B ¼ MAP−BMR

iið ÞT > TMAPf S ¼ Aþ A � f � ln T=TMAPð Þ
B ¼ MAP−BMRð Þ þ E � ln T=TMAPð Þ

ð8Þ

where PT is the power at any time T, k1 and k2 are re-
spective time constants to account for the kinetics of
aerobic and anaerobic metabolism, BMR is the basal
metabolic rate assumed to be 1.2 J/kg equivalent to 3.4
ml O2/kg/min using 1 ml O2 equivalent to 20.9 J, A is
the capacity of the anaerobic metabolism in J/kg, E is
the reduction in peak aerobic power with natural loga-
rithm of race duration T (when T > TMAP), MAP is the
maximum aerobic power in W/kg, f is a constant de-
scribing reduction in energy from anaerobic metabolism
over time T, and TMAP is the time for which the MAP
can be sustained (assumed to be 420 s).
The Peronnet-Thibault model was able to estimate

world record performances ranging from 60m to full
marathons with an average absolute error of 0.73% for
males and 1.27% for females. The limitations, however,
include the determination of the parameters A, MAP,
and E as well as the accuracy of the assumed parameters
such as BMR and TMAP in Eq. 8. Morton [51] also

discusses a bioenergetic hydraulic model with separate
cases for maximal power, endurance at constant work
rate, and endurance at incremental ramp exercises com-
prising of several parameters. Morton compares the bio-
energetic model estimates to experimental data from
other studies and shows them to be in agreement in pre-
dicting the endurance time for the different cases [51].
These alternate models, though having better accuracy
in predicting the maximal instantaneous power and the
maximal aerobic power compared to the two-parameter
model, have many parameters that need to be assumed
or estimated, which adds to their complexity [35, 52]. To
address the limitations of the two-parameter model and
to reduce the complexity of alternate models, Morton
[52] proposed an extension of the two-parameter model
by adding a non-zero time asymptote k to Eq. 5. This
model was called the three-parameter model and is
given by:

t ¼ W 0

P−CP
þ k ð9Þ

where k can be derived by substituting t = 0 and P =
Pmax in Eq. 9 resulting in

k ¼ W 0

CP−Pmax
ð10Þ

Rewriting Eq. 9 as

t ¼ W 0

P−CP
þ W 0

CP−Pmax
ð11Þ

results in k < 0 as Pmax > CP. The Pmax term in Eq. 11
represents the point at which the power curve intersects
the power axis representing an instantaneous maximum
power that can be produced.
Weyand and colleagues [53] proposed a model for all-

out cycling efforts ranging between 3 and 300 s which is
similar to that of Ward-Smith’s [3] given by:

P tð Þ ¼ Paer þ Pmech max−Paerð Þ � e −kcycle �tð Þ ð12Þ
where Paer (synonymous with CP) is the maximum

power output that can be supported aerobically, Pmech

max is the maximum power output for a 3-s trial, and
kcycle is the exponent describing the decrease in power
with the increase in time t. Morton [54] also provided
an extension of the three-parameter model while pre-
senting a model for all-out running efforts given by:

P tð Þ ¼ CP þ Pmax−CPð Þ � e t=kð Þ ð13Þ
The model in Eq. 13 is similar to the models proposed

by Ward-Smith [3], Hopkins and colleagues [49], and
Weyand and colleagues [53]. Expressing Weyand’s kcycle
as a reciprocal will result in Hopkins’ model in Eq. 7 and
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Morton’s model in Eq. 13. The signs of these constants
are different, which are accounted for by regression.
Figure 3 shows three models (two-parameter, three-
parameter, and exponential) plotted against experimen-
tal data presented by Gaesser and colleagues [34]. The
values of CP, W′, and Pmax were taken from [34], and
data points were extracted using the open source soft-
ware Plot Digitizer. Table 1 summarizes the estimates
from each method.
There are other models proposed in the literature

which are algebraic manipulations of the two-parameter
model shown in Eq. 5. However, these models yield dif-
ferent estimates of CP and W′ at the individual level for
the same data as seen in [34, 55, 56]. These differences
in estimates could originate from the rounding off ap-
proximations of reciprocals such as 1/tLim. CP estimates
from different models are reported to be in close agree-
ment with each other in [34, 55, 56]. However, as illus-
trated in Table 1, the estimation of W′ remains elusive
as the same data can yield different estimates depending
on the model used even though CP estimates are com-
parable [34, 38, 55–61]. The two-parameter model,
though having limitations (P = ∞ at t = 0 and CP lasting
indefinitely), owing to its simplicity, can potentially be
used to optimize performance as well as determining
strategies by estimating time-to-exhaustion [16, 17, 62].

Methods and Protocols to Estimate CP and W′
The first protocol to estimate CP and W′ was derived
from Monod and Scherrer’s [2] work. Subjects would
complete at least three constant work-rate (CWR) to ex-
haustion tests, and the two-parameter model would then

be fit to the data resulting in CP and W′ estimates. D.
W. Hill [35] suggests the use of the linear model (P ver-
sus 1/tLim) with at least 4–5 CWR tests to arrive at CP
and W′ estimates.
While less prevalent in the literature, Morton [58]

demonstrated another method to determine estimates of
CP and W′ from ramp exercises to exhaustion by deriv-
ing an equation between time-to-exhaustion and ramp
slope given by:

T ¼ CP
S

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �W 0

S

r
ð14Þ

where T is the time-to-exhaustion in seconds and S is
the ramp slope in watts/second. Morton suggested that
subjects complete 4–5 ramp tests to exhaustion at differ-
ent slopes. The time-to-exhaustion from these tests are
then plotted against the slopes and Eq. 14 would be fit-
ted to the data to determine CP and W′. Morton claims
that the estimates from this protocol appear to be lower
than those from the CWR protocol thus addressing the
overestimation of CP reported in a few publications
cited earlier. The ramp protocol was compared to the
CWR protocol by Morton and colleagues [63] showing
an underestimation of W′ and no statistical difference
for CP. However, a closer inspection shows underestima-
tion of W′ by approximately 10 kJ, 4 kJ, 3 kJ, and 9 kJ for
subjects 1, 2, 3, and 6 respectively and an overestimation
of W′ by approximately 8 kJ, 6 kJ, and 3 kJ for subjects 4,
9, and 10 respectively (see Table 1 in [63]).
Vanhatalo and colleagues [64] proposed the 3-min all-

out test (3MT) to determine CP and W′ in fewer labora-
tory visits. This test involves pedaling at all-out intensity
for 3 min with CP estimated by the average power from
the last 30 s and W′ given by the area under the curve
above CP [57, 64]. Figure 4 shows the schematic repre-
sentation of a notional 3MT. Parallels can be drawn be-
tween the 3MT and the Wingate anaerobic test [65],
which is essentially a 30-s all-out test. Studies that com-
pare W′ to the anaerobic capacity from the Wingate test
report a correlation coefficient of ~ 0.7 [66, 67].

Fig. 3 The two-parameter model (solid line), the three-parameter
model (dashed line), and the exponential model (dotted line) fitted
to the same experimental data (solid circles) presented by Gaesser
and colleagues [34]. Data extracted from Fig. 2 in [34] (p. 1434) and
redrawn with permission using the values reported in the
original article

Table 1 Summary of estimates from all models fit to the data
presented by Gaesser and colleagues [34]

Model CP
(W)

W′ (J) Pmax

(W)
Additional model parameters
(λ, τ, kcycle, or k) (s)

Two-parameter
model

1
176

2
29100

3 NA 4 NA

5 Three-
parameter model

6
165

7
47900

8
491

9 − 146.93

10 Exponential
model

11
205

12
NA

13
452

14 0.0044 or − 225.2867*

*Morton’s [54] k = − 225.2867, Hopkins’ [49] τ = 225.2867, which are same as
Weyand’s [53] − 1/kcycle and Ward-Smith’s [3] − 1/λ
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Therefore, the anaerobic capacity from the Wingate test
and W′ cannot be used interchangeably.
The estimates from the 3MT have been compared

to those from the CWR tests in [28, 60, 68] and
thereby, validating the 3MT. Burnley and colleagues
[69] saw (in 7 out of 11 subjects) a steady state blood
lactate and oxygen uptake profile in 30 min of exer-
cise at 15W below CP determined from the 3MT.
They made the same subjects pedal at 15W above
CP which resulted in an average time-to-exhaustion
of 13 ± 7 min. Black and colleagues [62] used the CP
determined from the 3MT to successfully estimate a
16.1 km time trial performance. However, studies have
reported that the time-to-exhaustion at CP derived
from the 3MT to be 14.79 ± 8.38 min and 12.5 ± 6.5
min in [70, 71] respectively. These are similar to 13 ±
7 min for exercise at 15W above CP reported by
Burnley and colleagues [69]. Moreover, W′ from 3MT
has also been reported to be overestimated in com-
parison to CWR protocol (11.37 ± 3.84 kJ vs 9.55 ± 4
kJ) [72]. However, as discussed by Skiba [73], the er-
rors observed in the estimates could be attributed to
not using the same equipment or not adhering to the
test procedure laid out in [64]. Additionally, the in-
herent day-to-day variability within subjects, referred
to as the intra-individual variability (IIV), may have
contributed to the shorter time-to-exhaustion ob-
served at CP [17, 38]. Hence, exercise outside a sub-
ject’s 95% confidence interval of CP, i.e., outside the
bounds of the IIV associated with CP (similar to 15
W above and below CP in [69]), will yield better in-
sights into reliability of the 3MT.

Limitations of the Protocols Used to Determine CP and W′
The CWR protocol is considered as the “gold-standard”
to estimate CP and W′ as it was the first method to be
proposed. However, the CWR protocol is not devoid of
shortcomings. Using the CWR protocol, Bishop and col-
leagues [74] and Jenkins and colleagues [75] illustrated
that the duration of the predicting trials influences the
estimates with both CP and W′ computed from three
shortest duration trials being significantly greater than
those from the three longest trials. Furthermore, CP esti-
mates from the CWR protocol at 60 rpm have been
found to be significantly greater than those at 100 rpm
[76]. Considering these limitations, Muniz-Pumares and
colleagues [61] suggest the use of the two-parameter
hyperbolic model with at least three CWR trials of dura-
tions > 2 min and < 15 min and freely chosen cadence to
arrive at reliable estimates.
The 3MT avoids the need to do multiple tests to

arrive at CP and W′. However, there are reports of
overestimation of CP from the 3MT [70, 71, 77],
which are comparable to other reports of overesti-
mation of CP from the CWR tests in [41–44]. The
3MT appears to reliably predict a 16.1 km time trial
performance [62], which is in accordance with other
studies that report the validity of CP to be 40 min to
over 1 h [35, 45, 46]. These contradictory results can
be attributed to equipment, test method, validation
methods, and the day to day variability of the partic-
ipants [17, 38, 73].
It has been shown that the day-to-day (or trial-to-

trial) variability within a person, i.e., IIV, affects per-
formance during physical activities in [78]. The CWR
tests, depending on the fit and the model used, yield
standard errors of estimation (SEEs) for CP and W′.
These SEEs give a measure of goodness of fit and not
the IIV. To truly capture and quantify IIV using the
CWR protocol, exercise to exhaustion at each work-
rate must be repeated multiple times. CP and W′ es-
timates for each set of tests could be determined,
which can then be averaged to arrive at a grand mean
for CP and W′ (see Fig. 5). On similar lines, Triska
and colleagues [79] conducted maximal effort time
trials spanning 3, 7, and 12 min with each trial re-
peated thrice (one familiarization and two repeats)
and computed CP and W′ for each data set using the
two-parameter hyperbolic model. They found higher
reliability between the post familiarization trials with
intra-class correlation coefficient of 0.95 and 0.94 and
a coefficient of variation of 2.6% and 8.2% for CP and
W′ respectively. However, an average CP and W′ for
all three sets of data (or post familiarization trials)
could be computed to yield grand means for CP and
W′ for each subject with their IIVs as shown in Fig.
5. Although costly in terms of time, this method may

Fig. 4 Schematic representation of a 3-min all-out test to determine
critical power (CP) and the curvature constant (W′). The average
power of the last 30s yields CP and the area below the curve and
above CP yields W′
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lead to a better understanding of W′, which has been
shown to be ambiguous and significantly dependent
on the mathematical model used [34, 55–57, 59–61].
Though the 3MT has been shown to be repeatable in

[69], a closer investigation of the Bland-Altman plots
presented in the first paper on 3MT [69] (p.1998, Fig.
1d) shows the bias and 95% limits of agreement of − 1 ±
15W resulting from the variability associated with each
subject’s CP estimate across two trials. A 15-W change
in CP between two 3MTs contributes to a difference of
2700 J of W′ across the 3 min of the test. This IIV needs
to be accounted for before prescribing training schedules
and interventions based on the 3MT. The estimates
from the CWR protocol have associated SEEs for CP
and W′, whereas it is not possible to get a standard error
for W′ from a 3MT. A possible way to arrive at SEEs for
CP and W′ from the 3MT is by fitting a curve to the
data. Morton [54] used a biexponential extension to his
exponential model (Eq. 13) to be applicable to all-out ef-
forts given by,

P tð Þ ¼ CP þ Pmax−CPð Þ � et=k þ PIN � e−t=k 0 ð15Þ

where P is the power at any time t, CP is the critical
power, Pmax is the instantaneous maximum power, PIN
is the power required to overcome the initial inertial re-
sistance of the ergometer flywheel, and k and k′ are con-
stants. The PIN term accounts for 0–-5 s of the all-out
test. The model in Eq. 15 is shown to fit the all-out test
data with R2 = 0.985 in [54]. However, it has the follow-
ing shortcomings:

� At t = 0, P(0) = Pmax + PIN, which is not possible as
the instantaneous maximum power that can be
generated is Pmax. Instead, at t = 0, P(0) = Pmax −
PIN is a more realistic power output. The Pmax – PIN
correction is a mathematical quirk and lacks
physiological basis. However, Pmax could be assumed
to be equal to either the average power output of
one crank-rotation [40] or the power output of 3-s
trial [53] which accounts for the physiological con-
straints of producing an instantaneous Pmax. Fur-
thermore, if the all-out interval starts from rest, then
at t = 0, P(0) = 0 is a more valid initial condition as
power is defined as energy-expended/time and no
energy is expended before starting the exercise.

� Morton fit the model to Burnley’s data in [69] which
resulted in the CP = 336.3 ± 1.2W, Pmax = 959.3 ±
7.9W, PIN = 512.1 ± 13.8W, k = − 29.9 ± 0.5 s, and
k′ = 3.14 ± 0.16 s. Using these values in Eq. 15 and
plotting against time (from 0 to 180 s) does not
result in the desired shape of the 3MT as shown in
Fig. 4 (see Fig. 6). If PIN were to be negative, the
resulting shape would be similar to that of Fig. 4.
However, a negative resistance for the flywheel is
unrealistic.

� The power required to overcome the inertial
resistance of the flywheel can be computed using
Newton’s second law for rotational motion as shown
in [80]. The PIN term is a function of torque and
acceleration. Thus, there is no reason to assume an
exponential decay as shown in Eq. 15. A piecewise
model could be developed for a 3MT with the first
piece to account for the power needed to overcome
the flywheel’s inertia and the second to account for
the decline from peak power to CP. Furthermore,

Fig. 5 Repeated constant work-rate (CWR) tests to capture intra-
individual variability (IIV) associated with critical power (CP) and
curvature constant (W′) estimates. The dotted, dashed, and dot-
dashed lines show the fits to the different sets of data and their
respective asymptotes. The grand means for CP and W′ are obtained
by averaging the respective parameters estimates from each
curve fitting

Fig. 6 Morton’s biexponential model [54] plots showing positive
inertial resistance of ergometer flywheel, PIN (solid line) and negative
PIN (dashed line). The positive PIN term does not yield the shape
shown in Fig. 4
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the time taken by the muscle to reach Pmax needs to
be accounted for in the first piece where the
muscles are overcoming the flywheel resistance
while reaching their maximal power output.

The SEEs from curve fitting, as mentioned earlier, do
not quantify the IIV associated with CP and W′ for an
individual. Conducting multiple tests and computing
grand means for CP and W′ from each set of tests sig-
nificantly increases the time investment. There is a need
for better methods to capture the IIV from a 3MT,
minimize the number of testing days, and statistically
compare two 3MTs to arrive at reliable estimates of CP
and W′ for an individual. Furthermore, most studies re-
port the average of their participant groups. While this
is convenient in terms of comparing them with estimates
from other methods and protocols, they give little infor-
mation pertaining to the repeatability and variability at
the individual level. It is, therefore, practical to consider
individuals rather than groups and arrive at athlete-
specific models. This is important in terms of modeling
recovery of W′ which could be appended to the two-
parameter CP model, thereby aiding in performance
optimization.

Adding Recovery to the Two-Parameter Model
The CP concept has been discussed using a hydraulic
vessel analogy by Morton [38]. Morton [38] discusses
that the aerobic and anaerobic domains are analogous to
energy vessels connected by a tube of fixed diameter,
with the anaerobic vessel being limited in capacity and
the aerobic being unlimited (see Fig. 7). Morton suggests
that when functioning above CP, energy is derived from

the anaerobic vessel, whereas when exercising below CP,
energy is supplied by the aerobic vessel. Morton’s hy-
draulic analogy considers CP to be the boundary be-
tween aerobic and anaerobic domains, and AWC to be
equal to W′ as it was published around the same time as
Dekerle and colleagues’ study [33] that showed that
AWC and W′ cannot be used interchangeably.
Ignoring the assumption of AWC and W′ being equal,

Morton’s analogy suggests that while below CP, the
curvature constant W′ (limited capacity tank in Fig. 7) is
refilled or recovered. This suggestion presents the possi-
bility of modeling the recovery of W′ while exercising
below CP and thereby, together with the two-parameter
model, optimizing performance. While there are models
to estimate the depletion of W′, there are only a few
models that attempt to estimate its recharge/recovery
while below CP.
The first model considering recovery of W′ was pro-

posed by Morton and Billat [81]. Morton and Billat [81],
based on the two-parameter model, derived an equation
for time-to-exhaustion for intermittent exercise by as-
suming that the rates of recharge and expenditure of W′
were equal given by:

t ¼ n � tw þ trð Þ þW 0−n � Pw−CPð Þ � tw− CP−Prð Þ � tr½ �
Pw−CPð Þ

ð16Þ

where t is the total duration of the intermittent exercise,
n is the number of intervals, tw and tr are respective du-
rations of intervals above and below CP, and Pw and Pr
are respective power outputs of intervals above and
below CP. Ferguson and colleagues [82] were first to
quantify recovery of W′ by proposing that it is “curvilin-
ear” and not proportional to its depletion as assumed by
Morton and Billat [81]. Acknowledging this curvilinear
nature of recovery of W′, Skiba and colleagues [83–86]
proposed a model which assumed the behavior to be ex-
ponential given by:

W 0
bal ¼ W 0−

Zt

0

W 0
exp � e

− t−uð Þ
τW 0

� �
du ð17Þ

where W′bal is the W′ balance at any time during exer-
cise, W′exp is the amount of W′ expended, (t − u) is the
duration of the recovery interval, and τW′ is the time
constant of reconstitution of W′ in seconds given by:

τW 0 ¼ 546 � e −0:01DCPð Þ þ 316 ð18Þ

where DCP is the difference between CP and average
power output during all intervals below CP. Eq. 18 is a
non-linear regression obtained by plotting τW′ values

Fig. 7 Critical power (CP) concept using Morton’s hydraulic vessel
analogy [38]: Energy domains show sub-CP and supra-CP vessels
connected by a tube of fixed diameter. Morton’s aerobic and
anaerobic vessels are replaced by < CP and > CP respectively as the
curvature constant (W′) and anaerobic work capacity (AWC) cannot
be used interchangeably
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(calculated by setting the W′bal = 0 in Eq. 17 at the ter-
mination of exercise) against respective DCPs.
Skiba’s model was validated in [84] where an average

W′ balance at exhaustion of 0.5 ± 1.3 kJ was reported.
However, the model cannot be used to determine W′
balance in real time [73] (p.78) as the τW′ term needs W
′bal to be zero which is not known until the termination
of each test. Moreover, three forms of the W′bal model
have been published by Skiba and colleagues [83–86].
The first [83] contains only the integrand and not the
differential variable. The second [84, 85] contains the
differential “du” as shown in Eq. 17, whereas the third
[86] has “dt” as its differential variable. Changing the dif-
ferential variable from “du” to “dt” yields different results
upon integration. Additionally, inspecting Eq. 17 reveals
that the integral term on the right-hand side has units of
Joules-second causing an inequality as the units of the
left-hand side are Joules. Additional file 1 of this manu-
script provides a detailed derivation of the mathematical
solutions for both “du” and “dt” as the differential term
of the W′bal model illustrating the difference in results
as well as the imbalance of units. Furthermore, the
standard errors associated with the estimation of CP and
W′ may cause a negative balance of W′ balance (can be
seen in [84], Fig. 2, p.903). Skiba and colleagues [85]
proposed a biconditional W′bal model which resolves the
inequality of units (can be seen in Appendix 1 of [85])
given by:

If P > CP; W 0
bal ¼ W 0

0− P−CPð Þ � t½ �

If P < CP; W 0
bal ¼ W 0

0−W
0
exp � e

−DCP �t
W 0

0

� � ð19Þ

where W′0 is W′ at time t = 0. Though the model in Eq.
19 resolves the inequality of units, it has been shown to
underestimate the recovery of W′ by Bartram and col-
leagues [87]. Bickford and colleagues [88] presented a
model of recovery of W′ which was derived from limited
data and thus needs refinement.
Apart from the models presented above, at the time of

submission, there are no models available in the litera-
ture that attempt to model the recovery of W′. These
models need to be improved for accurately modeling the
recovery of W′ and combining them with the models of
exertion that are well established in the literature. There
is potential in extending the two-parameter model to
include the recovery model. A combined exertion-
recovery/discharge-recharge model of W′ will be worth-
while in estimating the time-to-exhaustion of endurance
efforts and optimizing performance. The potential of op-
timizing performance to accomplish a 2-h marathon has
been illustrated by Nike’s Breaking2 project [89] which
has inspired modeling studies by Hoogkamer and col-
leagues [90–92] based on the two-parameter CP model

with exponential recovery similar to Eq. 19, biomechan-
ical improvements, shoe design improvements, and
drafting strategy. Furthermore, the successful comple-
tion of a sub 2-h marathon by Eliud Kipchoge as a part
of the INEOS 1:59 challenge in Vienna in October 2019
provides encouraging signs for investigative studies fo-
cusing on optimization of performance in other endur-
ance sports.

Applications of a Combined Expenditure-Recovery Model of
W′

In the literature reviewed thus far, studies modeling re-
covery of W′ are scarce. A few models attempt to ad-
dress the need for a combined expenditure-recovery
model. Skiba’s first model [83] is similar to the mono-
exponential ventilatory gas exchange model for moder-
ate intensity cycling proposed by Whipp and colleagues
[93] and Vandewalle and colleagues’ aerobic power
model [67]. The exponential assumption of recovery
seems logical as sub-CP exercise is considered to be sup-
ported by aerobic mechanisms [38]. The τW′ relation in
Eq. 18 is representative of the seven recreational athletes
from whose data it was derived. Though the model was
validated using data from eight triathletes [84], it may
not be able to predict the recovery of W′ for athletes of
higher or lower caliber. This is illustrated by Caen and
colleagues [94] where faster recovery of W′ was ob-
served. Skiba’s second model (also mono-exponential)
[85], derived from first principles with valid assumptions,
addresses some limitations of the earlier version. How-
ever, it has not been validated and, like its predecessor,
has been shown to have slower recovery kinetics for elite
athletes by Bartram and colleagues [87].
De Jong and colleagues [95] have used the two-

parameter model to simulate the optimization of a 5-km
time-trial performance. However, a recovery model in
combination with the two-parameter model will aid in
optimizing performance over longer durations and dis-
tances. There have been other attempts at combining
the two-parameter model with a recovery model [88],
but the limited data result in the need for refinement.
The advantage of an exertion-recovery model is the abil-
ity to accurately predict the time-to-exhaustion during
endurance exercises. Furthermore, modeling fatigue, ex-
haustion, and recovery has applications not only in the
field of athletic training and performance but also in the
fields of medicine and health monitoring [12, 16, 17].
With an exertion-recovery model based on the CP con-

cept, an energy management system can be designed that
will regulate the expenditure and recovery of W′. The
optimization objectives would be minimizing time and
maximizing distance by maximizing power output with the
help of an exertion-recovery model. For example, in cycling
races, 3–4 cyclists form pelotons to reduce drag. It has been
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shown that the cyclists in the middle of a peloton experi-
ence up to 40% less drag [96]. A potentially successful race
strategy for the peloton group can be derived from the
exertion-recovery model using CPs and W′s of the individ-
ual riders. A similar drafting strategy was employed by
Eliud Kipchoge in the INEOS 1:59 challenge where he
completed a full marathon in 1 h 59min and 40.2 s. An-
other application is an energy management system for foot
missions of soldiers. Time to exhaustion in long foot mis-
sions, where soldiers carry all the load of ammunition, food,
and water can be accurately estimated with an exertion-
recovery model. Additionally, in team sports like football,
rowing, lacrosse, and soccer, CP and W′ could be used in
team selection, determining team strategies, planning indi-
vidual training needs, and training interventions [97]. Fur-
thermore, the combined model can be used to link W′
balance to performance quality and to estimate injury risk.
Together with wearable sensors, the model could
potentially be used to determine team strategies in terms of
player substitutions and avoiding fatigue-related injuries
and for real-time performance optimization. The rise in
popularity of wearable sensors has resulted in their use in
health monitoring [98] and physical activity tracking [98,
99] and provides opportunities to mitigate dependence on
laboratory equipment. Therefore, models of human per-
formance can be tested and validated outside the
laboratory.

Research Opportunities in Modeling Human Performance
The research opportunities identified in this review
article are cross-functional encompassing the areas of

human performance, exercise physiology, health, and
engineering. Though the themes belong to different
backgrounds, they are not independent of each other.
Table 2 summarizes the theme-wise research oppor-
tunities and applications that have been identified in
this paper.
Developing mathematical models of fatigue will not

only aid athletes, but also defense personnel in mission
planning and healthcare professionals who study the ef-
fect of physical exertion on overall health. The ability to
quantify the day-to-day variability aids the measurement
of training effectiveness and training prescription. Fur-
thermore, the theory of expenditure of W′ is explained
well by the two-parameter model. However, a robust
model for recovery of W′ is yet to be proposed.

Conclusions
The objective of this paper was to review the state of the
art for power-based models of fatigue and identify op-
portunities to advance the field. Power based models of
human performance which have their origins in cycling
have been reviewed. The two-parameter CP concept reli-
ably estimates fatigue due to severe intensity exercise in
the range of 2 min to 1 h and is also suitable to model
sprint performances of appropriate durations. Alternate
models predict the power and time relationship in the
severe intensity domain with better accuracy, but these
models require the determination of more parameters,
thereby, increasing complexity. CP and W′ can be esti-
mated using multiple models and protocols with the
3MT being the least time-consuming method. The 3MT,

Table 2 Theme-wise research opportunities and applications of human performance modeling

Themes Research opportunities and applications

Groups versus individuals Models derived from the data pertaining to a group of individuals may not accurately
model performance of athletes outside the group, thus, suggesting a need for individual
specific models [87].

Influence of mathematical modeling on W′ Understanding of W′ is still ambiguous as it is dependent on the model used
[34, 55–57, 59–61]. Quantifying the natural day-to-day/trial-to-trial variability within subjects,
i.e., IIV, may yield a better understanding of W′.

Natural variability within an individual Methods need to be developed to quantify the IIV associated with physiological parameters,
which will be useful in measuring training effectiveness, developing higher fidelity models, and
optimizing performance.

Recovery of W′ Current models described in [83–88] need refinement and improvement. A robust model
for recovery of W′ is needed, which could be athlete-specific. The W′ balance can potentially
be correlated to fatigue related injuries and the risk of injury could be estimated.

Performance optimization The recovery model in conjunction with the two-parameter model enables optimization
of time-trial performance as illustrated in [95, 100] and illustrated in [91, 92].

Wearable sensor integration Wearable sensors provide opportunities in real-time performance tracking, optimization,
and methods to reduce the reliance on laboratory equipment. Similar to studies in [101, 102],
commercially available sensors could be validated against laboratory equipment and used in
the field for developing higher fidelity models.

Integration of individual performance modeling into
team performance

Athlete-specific models could be used in determining team strategies, training interventions,
planning training needs, and team selection as illustrated in [91, 97].

Physical exertion and health Models of human performance could be used to gain insight into the effect of physical
exertion on overall health and well-being as discussed in [16, 17].
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despite its advantages, has a limitation of not capturing
the IIV associated with CP and W′ estimates. Standard
errors associated with the estimates from the power-
time regression of CWR tests could help in better quan-
tifying this variability. However, they only give a measure
of goodness of fit and do not capture the IIV. None of
the models available accommodate the IIV associated
with the parameter estimates, regardless of the method
of estimation used. Until methods to capture IIV are
proposed and validated, subject-specific training pre-
scription and subsequent performance optimization will
be limited in precision and accuracy. Additionally,
models derived from group data do not represent the
population as several factors and variables have a bearing
on human performance. Individualized athlete-specific
models need to be derived to potentially improve per-
formance through training prescriptions. The CP con-
cept, owing to its simplicity, is promising and robust in
terms of modeling fatigue in the severe intensity domain.
However, it is incomplete due to the lack of proper un-
derstanding of the recovery behavior of W′ in the mod-
erate and heavy intensity domains. Attempts have been
made to address this gap, but with limited success. The
models available provide a good starting point to de-
velop models of higher accuracy and fewer assumed pa-
rameters. A combined exertion-recovery model will lead
to optimized performance realized through an energy
management control system. The combined model could
lead to a straightforward way of assessing fatigue and
risk of injury and have implications with respect to the
influence of exercise on overall health.
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