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Abstract

Background: Wearable sensors are portable measurement tools that are becoming increasingly popular for the
measurement of joint angle in the upper limb. With many brands emerging on the market, each with variations in
hardware and protocols, evidence to inform selection and application is needed. Therefore, the objectives of this
review were related to the use of wearable sensors to calculate upper limb joint angle. We aimed to describe (i) the
characteristics of commercial and custom wearable sensors, (ii) the populations for whom researchers have adopted
wearable sensors, and (iii) their established psychometric properties.

Methods: A systematic review of literature was undertaken using the following data bases: MEDLINE, EMBASE,
CINAHL, Web of Science, SPORTDiscus, IEEE, and Scopus. Studies were eligible if they met the following criteria: (i)
involved humans and/or robotic devices, (ii) involved the application or simulation of wearable sensors on the
upper limb, and (iii) calculated a joint angle.

Results: Of 2191 records identified, 66 met the inclusion criteria. Eight studies compared wearable sensors to a
robotic device and 22 studies compared to a motion analysis system. Commercial (n = 13) and custom (n = 7)
wearable sensors were identified, each with variations in placement, calibration methods, and fusion algorithms,
which were demonstrated to influence accuracy.

Conclusion: Wearable sensors have potential as viable instruments for measurement of joint angle in the upper
limb during active movement. Currently, customised application (i.e. calibration and angle calculation methods) is
required to achieve sufficient accuracy (error < 5°). Additional research and standardisation is required to guide
clinical application.

Trial Registration: This systematic review was registered with PROSPERO (CRD42017059935).

Keywords: Kinematics, Wearable sensor, Inertial movement unit, Joint angle, Motion analysis, Upper limb

Key Points

� Both commercially available and custom wearable
sensors have some evidence of validity in the
literature. Although commercial wearable sensors
were validated against pseudo gold standards, each
study customised the commercial software to do so.

� Wearable sensors demonstrated errors < 5° for all
degrees of freedom at the wrist and elbow joints
when compared to a robotic device. The range in
error is greater when measured in vivo and
compared to a pseudo gold standard.

� The measured errors are within margins that
warrant future use of wearable sensors to measure
joint angle in the upper limb.

Background
Clinicians and researchers seek information about the
quality and quantity of patients’ movement as it provides
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useful information to guide and evaluate intervention.
Range of motion (ROM), defined as rotation about a
joint, is measured in a variety of clinical populations in-
cluding those with orthopaedic, musculoskeletal, and
neurological disorders. Measurement of ROM forms a
valuable part of clinical assessment; therefore, it is essen-
tial that it is completed in a way that provides accurate
and reliable results [1, 2].
In clinical practice, the goniometer is a widely used in-

strument to measure ROM [2–4]. Despite being consid-
ered a simple, versatile, and an easy-to-use instrument,
reports of reliability and accuracy are varied. Intra-class
correlation coefficients (ICCs) range from 0.76 to 0.94
(intra-rater) [3, 4] and 0.36 to 0.91 (inter-rater) [4] for
shoulder and elbow ROM. Low inter-rater reliability is
thought to result from the complexity and characteris-
tics of the movement, the anatomical joint being mea-
sured, and the level of assessor experience [5, 6]. The
goniometer is also limited to measuring joint angles in
single planes and static positions; thus, critical informa-
tion regarding joint angles during dynamic movement
cannot be measured.
In research settings, three-dimensional motion analysis

(3DMA) systems, such as Vicon (Vicon Motion Systems
Ltd., Oxford, UK) and Optitrack (NaturalPoint, Inc.,
Corvallis, OR, USA), are used to measure joint angles
during dynamic movement in multiple degrees of free-
dom (DOF). Such systems are considered the ‘gold
standard’ for evaluating lower limb kinematics, with a
systematic review reporting errors < 4.0° for movement
in the sagittal plane and < 2.0° in the coronal plane;
higher values have been reported for hip rotation in the
transverse plane (range 16 to 34°) [7]. Measurement in
the upper limb is considered more technically challen-
ging due to the complexity of shoulder, elbow, and wrist
movements [8]. However, given the demonstrated accur-
acy in the lower limb, 3DMA systems are used as the
‘ground truth’ when validating new upper limb measure-
ment tools [9]. However, 3DMA does have limitations.
Most notably, these systems are typically immobile, ex-
pensive, require considerable expertise to operate, and
therefore rarely viable for use with clinical populations
[10, 11].
Wearable sensors, or inertial measurement units, are be-

coming increasingly popular for the measurement of joint
angle in the upper limb [12]. In this review, we were inter-
ested in wearable sensors that contained accelerometers
and gyroscopes, with or without a magnetometer, to indir-
ectly derive orientation. The software typically utilised three
main steps: (i) calibration, using two approaches: (1) sys-
tem, also referred to as ‘factory calibration’ (offset of the
hardware on a flat surface), and (2) anatomical calibration
including both static (pre-determined pose) and dynamic
(pre-determined movement) [10, 13]; (ii) filtering, using

fusion algorithms including variations of the Kalman filter
(KF) [14, 15]; and (iii) segment and angle definition, using
Euler angle decompositions and/or Denavit-Hartenberg
Cartesian coordinates.
Wearable sensors are an increasingly popular surro-

gate for laboratory-based 3DMA due to their usability,
portability, size, and cost. Systematic reviews have de-
tailed their use during swimming [16] and whole body
analysis [17] and in the detection of gait parameters and
lower limb biomechanics [18]. However, their validity
and reliability must be established and acceptable prior
to their application [19]. Accuracy of the wearable sen-
sors is dependent on the joint and movement being
measured; therefore, a systematic review specific to the
upper limb is required. This study aimed to establish the
evidence for the use of wearable sensors to calculate
joint angle in the upper limb, specifically:

i. What are the characteristics of commercially
available and custom designed wearable sensors?

ii. What populations are researchers applying wearable
sensors for and how have they been used?

iii. What are the established psychometric properties
for the wearable sensors?

Methods
This systematic review was conducted in accordance
with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses guidelines [20] and registered
with the International Prospective Register of Systematic
Reviews on 23 March 2017 (CRD42017059935).

Search Terms and Data Bases
Studies and conference proceedings were identified
through searches in scientific data bases relevant to the
fields of biomechanics, medicine, and engineering, from
their earliest records to November 1, 2016: MEDLINE via
PROQUEST, EMBASE via OVID, CINAHL via EBSCO,
Web of Science, SPORTDiscus, IEEE, and Scopus. Refer-
ence lists were searched to ensure additional relevant
studies were identified. The search was updated on 9 Oc-
tober 2017 to identify new studies that met the inclusion
criteria.
The following search term combinations were used:

(“wearable sens*”OR “inertial motion unit*” OR “inertial
movement unit*” OR “inertial sens*” OR sensor) AND
(“movement* analysis” OR “motion analysis*” OR “mo-
tion track*” OR “track* motion*” OR “measurement sys-
tem*” OR movement) AND (“joint angle*” OR angle*
OR kinematic* OR “range of motion*”) AND (“upper
limb*” OR “upper extremit*” OR arm* OR elbow* OR
wrist* OR shoulder* OR humerus*). Relevant MeSH
terms were included where appropriate, and searches
were limited to title, abstract, and key words. All
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Fig. 1 A PRISMA diagram of the search strategy
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references were imported into Endnote X6 (Thomson
Reuters, Carlsbad, CA, USA), and duplicates were
removed.

Study Selection Criteria and Data Extraction
The title and abstracts were screened independently
by two reviewers (CW and AC). Full texts were re-
trieved if they met the inclusion criteria: (i) included
human participants and/or robotic devices, (ii) ap-
plied/simulated use of wearable sensors on the upper
limb, and (iii) calculated an upper limb joint angle.
The manuals of commercial wearable sensors were lo-
cated, with information extracted when characteristics
were not reported by study authors. Studies were ex-
cluded based on the following criteria: (i) used a sin-
gle wearable sensor, (ii) included different motion
analysis systems (i.e. WiiMove, Kinetic, and smart
phones), (iii) used only an accelerometer, (iv) calcu-
lated segment angle or position, (v) studied the scap-
ula, or (vi) were not published in English.
Two reviewers (CW and AC) extracted data independ-

ently to a customised extraction form. Discrepancies
were discussed, and a third reviewer (TG) was involved
when consensus was not reached. Extracted parameters
of the wearable sensor characteristics included custom
and commercial brands, the dimensions (i.e. height and
weight), components used (i.e. accelerometer, gyroscope,
and magnetometer), and the sampling rate (measured in
hertz (Hz)). Sample characteristics included the number
of participants, their age, and any known clinical path-
ology. To determine if authors of the included studies
customised aspects of the wearable sensors system, the
following parameters were extracted: the type of calibra-
tion (i.e. system and anatomical), the fusion algorithms
utilised, how anatomical segments were defined, and
how joint angle was calculated.
To understand the validity and reliability of the wear-

able sensors, information about the comparison system,
marker placement, and psychometric properties were ex-
tracted. The mean error, standard deviation (SD), and
root mean square error (RMSE) reported in degrees
were extracted where possible from the validation stud-
ies. The RMSE represents the error or difference be-
tween the wearable sensor and the comparison system
(e.g. 3DMA system). The larger the RMSE, the greater
the difference (in degrees) between the two systems. Fur-
ther, to report on the validity of the wearable sensors,
studies that did not delineate error between the wearable
sensor and soft tissue artefact (movement of the markers
with the skin) by not using the same segment tracking
were not further analysed. Reliability was assessed using
ICCs, with values < 0.60 reflecting poor agreement,
0.60–0.79 reflecting adequate agreement, and 0.80–1.00
reflecting excellent agreement [21].

The following parameters were used to guide the in-
terpretation of measurement error, with < 2.0° consid-
ered acceptable, between 2.0 and 5.0° regarded as
reasonable but may require consideration when inter-
preting the data, and > 5.0° of error was interpreted with
caution [7].

Assessment of Risk of Bias and Level of Evidence
Due to the variability between research disciplines (i.e.
health and engineering) in the way that studies were re-
ported, and the level of detail provided about the re-
search procedures, the available assessments of risk of
bias and levels of evidence were not suitable for this re-
view. Therefore, the following criteria were used to
evaluate the quality of the reporting in the included
studies:

– The aim of the study was clear and corresponded to
the results that were reported.

– The study design and type of paper (i.e. conference
proceeding) were considered.

– Number of participants included in the study was
considered in relation to the COSMIN guidelines
which indicate that adequate samples require 50–99
participants [19].

Results
The initial search (2016) identified 1759 studies eligible
for inclusion, with an additional 432 studies identified
12 months later (2017). A total of 66 studies met the in-
clusion criteria (Fig. 1). Eight studies reported on the
validation against a robotic device, and 22 reported on
validation against a motion analysis system with human
participants. One study assessed the reliability of the
wearable sensors, with the remaining 35 studies using
wearable sensors as an outcome measure in an experi-
mental design.

Characteristics and Placement of the Wearable Sensors
The characteristics of the wearable sensors are sum-
marised in Table 1. A total of seven customised wearable
sensors and 13 commercial brands were identified. The
level of detail provided for the placement of the wearable
sensors on the upper limb varied significantly, as did the
mode of attachment (Table 1).

Calibration Methods
Forty-seven studies reported on a calibration procedure
prior to data acquisition. System calibration, also com-
monly known as ‘factory calibration’, was reported on 12
occasions, with two procedures described for the wear-
able sensors: (i) placement on a flat surface and/or (ii)
movement in a pre-determined order while attached to a
flat surface [56, 62]. The aim of system calibration was

Walmsley et al. Sports Medicine - Open            (2018) 4:53 Page 4 of 22



Ta
b
le

1
Su
m
m
ar
y
of

th
e
de

sc
rip

tiv
e
ch
ar
ac
te
ris
tic
s
of

th
e
w
ea
ra
bl
e
se
ns
or
s

St
ud

y
Br
an
d

N
o.
of

se
ns
or
s

us
ed

D
im

en
si
on

s
(m

m
)

L
×
W

×
H

W
ei
gh

t
(g
ra
m
s)

W
ire
le
ss

C
om

po
ne

nt
s

Sa
m
pl
e

ra
te

(H
z)

M
et
ho

d
of

at
ta
ch
m
en

t
Pa
rt
ic
ip
an
ts

Fi
rs
t
au
th
or

C
on

fe
re
nc
e/

fu
ll
te
xt

Po
pu

la
tio

n
N

M
ea
n
ag
e
±
SD

(y
ea
rs
)

A
cc

G
yr

M
ag

M
ul
le
r
et

al
.[
22
]

Fu
ll

Xs
en

s—
M
Tw

A
w
in
da

2
47

×
30

×
13
*

16
*

Y*
✓

✓
✓

–
D
S
ta
pe

H
ea
lth

y
1

25

Bo
uv
ie
r
et

al
.[
23
]

Fu
ll

Xs
en

s—
M
Tw

4
34
.5
×
57
.8
×
14
.5

27
Y

✓
✓

✓
60

D
S
ta
pe

an
d

el
as
tic

H
ea
lth

y
10

29
±
3.
4

Ro
be

rt
-L
ac
ha
in
e

et
al
.[
24
]

Fu
ll

Xs
en

s—
M
VN

17
–

50
*

N
✓

✓
✓

30
Ve
lc
ro

H
ea
lth

y
12

26
.3
±
4.
4

Ro
be

rt
-L
ac
ha
in
e

et
al
.[
25
]

Fu
ll

Xs
en

s—
M
VN

17
–

50
*

N
✓

✓
✓

30
Ve
lc
ro

H
ea
lth

y
12

26
.3
±
4.
4

Ec
ka
rd
t
et

al
.[
26
]

Fu
ll

Xs
en

s—
M
VN

17
–

50
*

N
✓

✓
✓

12
0

Bo
dy

su
it

H
ea
lth

y
20

20
.2
±
5.
7

Ec
ka
rd
t
et

al
.[
27
]

Fu
ll

Xs
en

s—
M
VN

17
–

50
*

N
✓

✓
✓

12
0

Bo
dy

su
it

H
ea
lth

y
10

23
.4
±
5.
3

A
lv
ar
ez

et
al
.[
28
]

Fu
ll

Xs
en

s—
M
Tx

4
38

×
53

×
21
*

30
*

N
✓

✓
✓

50
Ve
lc
ro

an
d

el
as
tic

Ro
bo

t
an
d

he
al
th
y

1
–

Q
ui
no

ne
s
et

al
.[
29
]

C
on

Xs
en

s—
M
Tx

7
38

×
53

×
21
*

30
*

N
✓

✓
✓

50
–

SC
I

15
37
.4
±
7.
3

G
il-
A
gu

do
et

al
.[
30
]

Fu
ll

Xs
en

s—
M
Tx

5
38

×
53

×
21
*

30
*

N
✓

✓
✓

25
–

H
ea
lth

y
1

30

A
lv
ar
ez

et
al
.[
31
]

Fu
ll

Xs
en

s—
M
Tx

4
40

×
55

×
22

30
*

–
✓

✓
✓

50
El
as
tic

Ro
bo

t
an
d

he
al
th
y

2
–

Ba
ie
t
al
.[
32
]

C
on

Xs
en

s—
M
Tx

3
38

×
53

×
20
.9

30
N

✓
✓

–
10
0

–
–

–
–

Ba
ie
t
al
.[
33
]

C
on

Xs
en

s—
M
Tx

2
38

×
53

×
21
*

30
*

–
✓

✓
✓

12
0

Ve
lc
ro

H
ea
lth

y
1

–

Zh
an
g
et

al
.[
34
]

Fu
ll

Xs
en

s—
M
Tx

3
38

×
53

×
21
*

30
*

–
✓

✓
✓

10
0

–
H
ea
lth

y
4

–

Ro
dr
iq
ue
s-
A
ng

le
se

et
al
.[
35
]

C
on

Xs
en

s—
M
Tx

2
38

×
53

×
21
*

30
*

N
✓

✓
✓

10
0

–
Ro

bo
t
an
d

he
al
th
y

1
–

C
ut
ti
et

al
.[
36
]

Fu
ll

Xs
en

s—
M
T9
B

4
39

×
54

×
28

38
N

✓
✓

✓
10
0

D
S
ta
pe

an
d

el
as
tic

H
ea
lth

y
1

23

Zh
ou

et
al
.[
37
]

Fu
ll

Xs
en

s—
M
T9
B

2
–

–
N

✓
✓

✓
25

Ve
lc
ro

H
ea
lth

y
4

20
–4
0

Zh
ou

et
al
.[
38
]

Fu
ll

Xs
en

s—
M
T9
B

2
–

–
N

✓
✓

–
25

–
H
ea
lth

y
1

–

Pe
re
z
et

al
.[
39
]

Fu
ll

Xs
en

s —
M
Ti

4
58

×
58

×
22
*

50
–

✓
✓

✓
50

Fa
br
ic

H
ea
lth

y
1

–

M
ie
za
le
t
al
.[
15
]

Fu
ll

Xs
en

s
3

–
–

–
✓

✓
✓

12
0

–
H
ea
lth

y
1

30

M
ig
ue
l-A

nd
re
s

et
al
.[
40
]

Fu
ll

Xs
en

s
3

–
–

N
✓

✓
✓

75
Ve
lc
ro

an
d

D
S
ta
pe

H
ea
lth

y
10

29
.3
±
2.
21

Lu
in
ge

et
al
.[
41
]

Fu
ll

Xs
en

s
2

–
–

N
✓

✓
–

–
D
S
ta
pe

an
d

le
uk
op

la
st

H
ea
lth

y
1

–

Walmsley et al. Sports Medicine - Open            (2018) 4:53 Page 5 of 22



Ta
b
le

1
Su
m
m
ar
y
of

th
e
de

sc
rip

tiv
e
ch
ar
ac
te
ris
tic
s
of

th
e
w
ea
ra
bl
e
se
ns
or
s
(C
on

tin
ue
d)

St
ud

y
Br
an
d

N
o.
of

se
ns
or
s

us
ed

D
im

en
si
on

s
(m

m
)

L
×
W

×
H

W
ei
gh

t
(g
ra
m
s)

W
ire
le
ss

C
om

po
ne

nt
s

Sa
m
pl
e

ra
te

(H
z)

M
et
ho

d
of

at
ta
ch
m
en

t
Pa
rt
ic
ip
an
ts

Fi
rs
t
au
th
or

C
on

fe
re
nc
e/

fu
ll
te
xt

Po
pu

la
tio

n
N

M
ea
n
ag
e
±
SD

(y
ea
rs
)

A
cc

G
yr

M
ag

M
or
ro
w

et
al
.[
42
]

Fu
ll

A
D
PM

O
pa
l

6
43
.7
×
39
.7
×
13
.7
*

<
25
*

Y
✓

✓
✓

80
St
ra
p

Su
rg
eo

ns
6

45
±
7

Ro
se

et
al
.[
43
]

Fu
ll

A
D
PM

O
pa
l

6
43
.7
×
39
.7
×
13
.7
*

<
25
*

Y
✓

✓
–

12
8

St
ra
p

Su
rg
eo

ns
14

–

Be
rt
ra
nd

et
al
.[
44
]

C
on

A
D
PM

O
pa
l

3
48

×
36

×
13

<
22

Y
✓

✓
✓

–
D
S
ta
pe

A
st
ro
na
ut
s

2
–

Fa
nt
oz
zi
et

al
.[
45
]

Fu
ll

A
D
PM

O
pa
l

7
43
.7
×
39
.7
×
13
.7
*

<
25
*

Y
✓

✓
✓

12
8

Ve
lc
ro

Sw
im

m
er
s

8
26
.1
±
3.
4

Ki
rk
in
g
et

al
.[
46
]

Fu
ll

A
D
PM

O
pa
l

3
43
.7
×
39
.7
×
13
.7
*

22
–

✓
✓

✓
–

D
S
ta
pe

an
d

st
ra
p

H
ea
lth

y
5

–

Ri
cc
ie
t
al
.[
47
]

Fu
ll

A
D
PM

O
pa
l

6
43
.7
×
39
.7
×
13
.7
*

<
25
*

Y
✓

✓
–

12
8

Ve
lc
ro

Ro
bo

t
–

–

El
-G
oh

ar
y
et

al
.[
48
]

Fu
ll

A
D
PM

O
pa
l

3
43
.7
×
39
.7
×
13
.7
*

<
25

a
–

✓
✓

–
12
8

Ve
lc
ro

Ro
bo

t
–

–

Ri
cc
ie
t
al
.[
49
]

C
on

A
D
PM

O
pa
l

5
43
.7
×
39
.7
×
13
.7
*

<
22

Y
✓

✓
–

12
8

Ve
lc
ro

H
ea
lth

y
4
an
d
4

7
±
0.
3
an
d
27

±
1.
9

El
-G
oh

ar
y
et

al
.[
50
]

Fu
ll

A
D
PM

O
pa
l

2
43
.7
×
39
.7
×
13
.7
*

<
25
*

–
✓

✓
–

12
8^

Ve
lc
ro

H
ea
lth

y
8

–

El
-G
oh

ar
y
et

al
.[
51
]

C
on

A
D
PM

O
pa
l

2
43
.7
×
39
.7
×
13
.7
*

<
25
*

Y
✓

✓
–

–
St
ra
p

H
ea
lth

y
1

–

M
az
om

en
os

et
al
.[
52
]

Fu
ll

Sh
im

m
er

2r
2

–
–

Y
✓

✓
✓

50
C
us
to
m

ho
ld
er
s

an
d
el
as
tic

H
ea
lth

y
an
d

st
ok
e

18
an
d
4

25
–5
0
an
d
45
–7
3

Tr
an

et
al
.[
53
]

C
on

Sh
im

m
er

2r
2

–
–

Y
✓

✓
✓

18
St
ra
p

H
ea
lth

y
1

–

D
au
no

ra
vi
ce
ne

et
al
.[
54
]

Fu
ll

Sh
im

m
er

3
–

–
✓

✓
–

51
.2

St
ra
p

St
ro
ke

14
60
.8
±
12
.5

Be
rt
om

u-
M
ot
os

et
al
.[
55
]

Fu
ll

Sh
im

m
er

2
51

×
34

×
14
*

–
Y

✓
✓

✓
–

St
ra
p

H
ea
lth

y
4
an
d
50

21
–5
1
an
d
20
–7
2

M
en

g
et

al
.[
56
]

C
on

Sh
im

m
er

2
51

×
34

×
14
*

–
Y

✓
✓

✓
20

Ve
lc
ro

Sp
he

ric
al

co
or
di
na
te

sy
st
em

an
d

he
al
th
y

1
–

Pe
pp

ol
on

ie
t
al
.[
57
]

C
on

Sh
im

m
er

3
51

×
34

×
14
*

Y
✓

✓
✓

10
0

Ve
lc
ro

H
ea
lth

y
1

–

Ru
iz
-O
la
ya

et
al
.[
58
]

Fu
ll

In
ve
nS
en

se
M
PU

91
50

ch
ip

2
–

–
N

✓
✓

✓
50

St
ra
ps

H
ea
lth

y
3

–

C
al
le
ja
s
–C

ur
er
vo

et
al
.[
59
]

Fu
ll

In
ve
nS
en

se
M
PU

91
50

ch
ip

2
–

–
N

✓
✓

✓
30

D
S
ta
pe

Ro
bo

t
an
d

he
al
th
y

3
–

Li
et

al
.[
60
]

Fu
ll

In
ve
nS
en

se
M
PU

91
50

ch
ip

2
–

–
N

✓
✓

✓
–

–
St
ro
ke

an
d

H
ea
lth

y
35

an
d
11

–

G
ao

et
al
.[
61
]

C
on

In
ve
nS
en

se
M
PU

91
50

ch
ip

2
26
.2
×
39
.2
×
14
.8

–
Y

✓
✓

✓
–

–
H
ea
lth

y
1

25

Walmsley et al. Sports Medicine - Open            (2018) 4:53 Page 6 of 22



Ta
b
le

1
Su
m
m
ar
y
of

th
e
de

sc
rip

tiv
e
ch
ar
ac
te
ris
tic
s
of

th
e
w
ea
ra
bl
e
se
ns
or
s
(C
on

tin
ue
d)

St
ud

y
Br
an
d

N
o.
of

se
ns
or
s

us
ed

D
im

en
si
on

s
(m

m
)

L
×
W

×
H

W
ei
gh

t
(g
ra
m
s)

W
ire
le
ss

C
om

po
ne

nt
s

Sa
m
pl
e

ra
te

(H
z)

M
et
ho

d
of

at
ta
ch
m
en

t
Pa
rt
ic
ip
an
ts

Fi
rs
t
au
th
or

C
on

fe
re
nc
e/

fu
ll
te
xt

Po
pu

la
tio

n
N

M
ea
n
ag
e
±
SD

(y
ea
rs
)

A
cc

G
yr

M
ag

La
m
br
et
ch
t
et

al
.[
62
]

Fu
ll

In
ve
nS
en

se
M
PU

91
50

ch
ip

4
12

×
12

×
6

–
N

✓
✓

✓
50

–
H
ea
lth

y
1

–

Pe
pp

ol
on

ie
t
al
.[
63
]

C
on

In
ve
nS
en

se
M
PU

91
50

ch
ip

4
–

–
–

✓
✓

✓
–

Ve
lc
ro

H
ea
lth

y
1

–

Eo
m

et
al
.[
64
]

Fu
ll

In
ve
nS
en

se
M
PU

60
50

ch
ip

2
–

–
Y

✓
✓

–
–

St
ra
ps

Ro
bo

t
an
d

go
ni
om

et
er

Ro
ld
an
-J
im

en
ez

et
al
.[
65
]

Fu
ll

In
te
rS
en

se
In
er
tia
C
ub

e3
3

26
.2
×
39
.2
×
14
.8

17
N

✓
✓

✓
–

D
S
ta
pe

an
d

el
as
tic

co
he

si
ve

ba
nd

ag
e

H
ea
lth

y
15

18
–3
5

Ro
ld
an
-J
im

en
ez

et
al
.[
66
]

Fu
ll

In
te
rS
en

se
In
er
tia
C
ub

e3
4

26
.2
×
39
.2
×
14
.8

17
N

✓
✓

✓
10
00

D
S
ta
pe

an
d

el
as
tic

co
he

si
ve

ba
nd

ag
e

H
ea
lth

y
11

24
.7
±
4.
2

N
gu

ye
n
et

al
.[
67
]

C
on

Bi
oK

in
W
M
S

2
–

–
Y

✓
✓

✓
20
0

St
ra
ps

H
ea
lth

y
15

20
–6
0

Ka
ru
na
ra
th
ne

et
al
.[
68
]

C
on

Bi
oK

in
W
M
S

2
–

–
Y

✓
✓

–
–

St
ra
ps

H
ea
lth

y
4

–

Li
go

rio
et

al
.[
69
]

Fu
ll

YE
IT
ec
hn

ol
og

y
2

–
–

N
–

✓
–

22
0

Ve
lc
ro

H
ea
lth

y
15

28
±
3

Vi
gn

ai
s
et

al
.[
70
]

Fu
ll

C
A
PT
IV

M
ot
io
n

5
60

×
35

×
19

32
Ya

✓
✓

✓
64

St
ra
ps

H
ea
lth

y
5

41
.2
±
11

C
he

n
et

al
.[
71
]

C
on

L-
P
Re
se
ar
ch

M
ot
io
n

Se
ns
or

B2

8
39

×
39

×
8*

12
Y

✓
✓

✓
–

–
G
on

io
m
et
er

–
–

M
at
su
m
ot
o

et
al
.[
72
]

Fu
ll

N
or
ax
on

M
yo
m
ot
io
n

13
37
.6
×
52

×
18
.1

<
34

–
✓

✓
✓

20
0

–
H
ea
lth

y
an
d

st
ok
e

10
an
d
1

32
.2
±
9.
3
an
d
27

Sc
hi
ef
er

et
al
.[
73
]

Fu
ll

C
U
EL
A

13
–

–
–

✓
✓

✓
50

Ve
lc
ro

H
ea
lth

y
20

37
.4
±
9.
9

Ba
lb
in
ot

et
al
.[
74
]

Fu
ll

A
rd
uM

uV
3
ch
ip

9
–

–
Y

✓
✓

✓
20

St
ra
ps

–
–

–

H
ua
ng

et
al
.[
75
]

Fu
ll

M
SU

LS
4

30
×
35

×
12

–
–

✓
✓

✓
50

Fa
br
ic

H
ea
lth

y
an
d

st
ok
e

11
an
d
22

53
±
8
an
d
62

±
10

Sa
la
m

et
al
.[
76
]

Fu
ll

C
us
to
m

3
44
.4
5
×
44
.4
5

–
Y

✓
✓

–
15
0

–
C
ric
ke
te
rs

10
–

C
ha
ng

et
al
.[
77
]

Fu
ll

C
us
to
m

2
–

–
N

✓
✓

✓
–

–
Ro

bo
t

–
–

Bo
rb
el
y
et

al
.[
78
]

C
on

C
us
to
m

2
–

–
N

✓
✓

✓
20
0

Ve
lc
ro

–
1

–

Ku
m
ar

et
al
.[
79
]

Fu
ll

C
us
to
m

14
66
.6
×
28
.2
×
18
.1
*

22
*

Y*
✓

✓
✓

25
C
us
to
m

ho
ld
er
s

an
d
Ve
lc
ro

H
ea
lth

y
an
d

un
-h
ea
lth

y
19

an
d
19

24
.6
±
6.
7
an
d
68
.4
±
8.
9

Le
e
et

al
.[
80
]

Fu
ll

C
us
to
m

7
66
.6
×
28
.2
×
18
.1

22
Y

✓
✓

✓
25

St
ra
ps

G
on

io
m
et
er

an
d
st
ro
ke

5
68

Walmsley et al. Sports Medicine - Open            (2018) 4:53 Page 7 of 22



Ta
b
le

1
Su
m
m
ar
y
of

th
e
de

sc
rip

tiv
e
ch
ar
ac
te
ris
tic
s
of

th
e
w
ea
ra
bl
e
se
ns
or
s
(C
on

tin
ue
d)

St
ud

y
Br
an
d

N
o.
of

se
ns
or
s

us
ed

D
im

en
si
on

s
(m

m
)

L
×
W

×
H

W
ei
gh

t
(g
ra
m
s)

W
ire
le
ss

C
om

po
ne

nt
s

Sa
m
pl
e

ra
te

(H
z)

M
et
ho

d
of

at
ta
ch
m
en

t
Pa
rt
ic
ip
an
ts

Fi
rs
t
au
th
or

C
on

fe
re
nc
e/

fu
ll
te
xt

Po
pu

la
tio

n
N

M
ea
n
ag
e
±
SD

(y
ea
rs
)

A
cc

G
yr

M
ag

C
ifu
en

te
s
et

al
.[
81
]

C
on

C
us
to
m

2
43

×
60

–
–

✓
✓

✓
60

St
ra
ps

H
ea
lth

y
9

–

Ka
nj
an
ap
as

et
al
.[
82
]

Fu
ll

C
us
to
m

2
–

–
N

✓
✓

✓
10
0

O
rt
ho

si
s

H
ea
lth

y
1

25

Zh
an
g
et

al
.[
83
]

C
on

–
2

–
–

Y
✓

✓
✓

–
–

H
ea
lth

y
1

–

Li
n
et

al
.[
84
]

Fu
ll

–
2

–
–

Y
✓

✓
✓

–
St
ra
ps

St
ro
ke

25
52
.2
±
10
.2
an
d
62
.2
±
7.
1

El
-G
oh

ar
y
et

al
.[
85
]

C
on

–
2

–
–

–
✓

✓
–

–
–

–
–

–

H
yd
e
et

al
.[
86
]

Fu
ll

–
–

–
–

–
✓

✓
–

–
–

Ro
bo

t
–

–

Ta
bl
e
1
is
or
ga

ni
se
d
by

th
e
br
an

d
of

th
e
w
ea
ra
bl
e
se
ns
or

fo
llo
w
ed

by
th
e
da

te
th
at

th
e
st
ud

y
w
as

pu
bl
is
he

d.
Th

is
al
lo
w
s
di
re
ct

co
m
pa

ris
on

to
be

m
ad

e
w
ith

in
th
e
br
an

d
of

th
e
w
ea
ra
bl
e
se
ns
or
s
an

d
tr
en

ds
to

be
id
en

tif
ie
d
be

tw
ee
n
m
or
e
re
ce
nt
ly

pu
bl
is
he

d
st
ud

ie
s

A
bb

re
vi
at
io
ns
:G

m
s
gr
am

s,
Y
ye
s,
N
no

,A
cc

ac
ce
le
ro
m
et
er
,G

yr
gy

ro
sc
op

e,
M
ag

m
ag

ne
to
m
et
er
,H

z
he

rt
z
(u
ni
t
of

fr
eq

ue
nc
y)
,S
D
st
an

da
rd

de
vi
at
io
n,

SC
Is
pi
na

lc
or
d
in
ju
ry
,P

D
Pa

rk
in
so
n
’s
di
se
as
e,

Fu
ll
fu
ll
te
xt
,C

on
co
nf
er
en

ce
pa

pe
r,
m
m

m
ill
im

et
re
,D

S
do

ub
le

si
de

d
Ke

y:
W
ire

le
ss
—
th
e
w
ea
ra
bl
e
se
ns
or

sy
st
em

w
as

co
ns
id
er
ed

w
ire

le
ss

if
th
e
w
ea
ra
bl
e
se
ns
or
s
di
d
no

t
ha

ve
w
ire

s
co
nn

ec
tin

g
th
em

to
an

ex
te
rn
al

so
ur
ce
,e

ve
n
if
th
at

ex
te
rn
al

so
ur
ce

w
as

al
so

m
ou

nt
ed

on
th
e
su
bj
ec
t

Sa
m
pl
e
ra
te
—
th
e
nu

m
be

r
of

da
ta

sa
m
pl
es

co
lle
ct
ed

pe
r
se
co
nd

by
th
e
w
ea
ra
bl
e
se
ns
or

m
ea
su
re
d
in

he
rt
z
(H
z)

w
hi
ch

is
th
e
un

it
of

fr
eq

ue
nc
y

C
us
to
m
—

de
fin

ed
as

a
ne

w
ly
de

ve
lo
pe

d
w
ea
ra
bl
e
se
ns
or

or
m
od

ifi
ca
tio

ns
ha

ve
oc
cu
rr
ed

to
th
e
pr
e-
ex
is
tin

g
ha

rd
w
ar
e
of

th
e
w
ea
ra
bl
e
se
ns
or

Sy
m
bo

ls
:

*T
he

in
fo
rm

at
io
n
w
as

ob
ta
in
ed

fr
om

th
e
m
an

uf
ac
tu
re
r
pr
oc
ed

ur
e
m
an

ua
lo

r
ot
he

r
re
fe
re
nc
ed

pa
pe

rs
^
Th

e
sa
m
pl
e
ra
te

w
as

do
w
n
sa
m
pl
ed

(r
ed

uc
ed

)
to

al
lo
w

co
m
pa

ris
on

to
th
e
M
O
C
A
P
sy
st
em

–
In
fo
rm

at
io
n
w
as

no
t
re
po

rt
ed

an
d/
or

un
cl
ea
r
in

th
e
st
ud

y
an

d/
or

un
ab

le
to

be
ob

ta
in
ed

fr
om

th
e
m
an

uf
ac
tu
re
r
m
an

ua
l

Walmsley et al. Sports Medicine - Open            (2018) 4:53 Page 8 of 22



reported to be to align coordinate systems [39, 56] and
account for inaccuracies in the orientation of wearable
sensor chip relative to its case/packaging [62]. Static
anatomical calibration was performed often (n = 34),
with dynamic anatomical calibration performed some-
times (n = 10) [23, 30, 36, 41, 45, 49, 57]. Only one study
used system calibration alongside both static and dy-
namic anatomical calibrations to compute joint kinemat-
ics [47].

Populations Assessed Using Wearable Sensors
Most studies (n = 52) recruited healthy adults; partici-
pants with known pathology were reported in nine stud-
ies (Table 1). One study recruited children (< 18 years)
[49]. Sample sizes ranged from 1 to 54 participants, with
a median sample of 7.6 participants per study.
Twenty-nine studies recruited less than five participants,
with 20 studies recruiting one single participant.

Psychometric Properties of Wearable Sensors
Validity
Validation studies were split into two categories: (i) stud-
ies that compared the wearable sensor output to simu-
lated upper limb movement on a robotic device
(Table 2) and (ii) studies that compared wearable sensors
output to a 3DMA system on a human participant
(Table 3). The term ‘error’ is used to describe the differ-
ence between the capture systems; however, we acknow-
ledge that comparisons between the wearable sensors
and a robotic device are the only true measures of error.

Robot Comparisons
Eight studies reported the error of wearable sensors
when compared to simulated upper limb movement on
a robotic device (Table 2). A mean error between 0.06
and 1.8° for flexion and 1.05 and 1.8° for lateral deviation
of the wrist was reported using Xsens [28, 31]. For elbow
flexion/extension, the difference between Invensence
and the robotic device was between 2.1 and 2.4° [59].
For finger flexion/extension, RMSEs ranged from 5.0 to
7.0° using a customised wearable sensor system [77].
Three studies reported the error associated with the

use of different fusion algorithms. Using the unscented
Kalman filter (UKF) to fuse data from Opal wearable
sensors, the RMSE range was 0.8–8.1° for 2DOF at the
shoulder, 0.9–2.8° for 1DOF at the elbow, 1.1–3.9° for
1DOF of the forearm, and 1.1–2.1° for 2DOF at the wrist
[46, 48]. The rotation of the shoulder and twist of the
wrist resulted in more error compared to single plane
movements of flexion/extension and pronation/supin-
ation [46, 48]. When the UKF was compared to a modi-
fied UKF, lower RMSEs were found across all 6DOF
using the modified UKF [46]. One study investigated the
effects that speed of movement had on measurement

error. Using Opal wearable sensors, the UKF was com-
pared to the extended Kalman filter (EKF) under three
speed conditions: slow, medium, and fast. For slow
movements, both fusion algorithms were comparable
across all 6DOF (RMSE 0.8–7.8° for the UKF and 0.8–
8.8° for the EKF). The UKF resulted in less error across
6DOF for the medium (RMSE 1.2–3.0°) and fast (RMSE
1.1–5.9°) speeds compared to the EKF (RMSE 1.4–8.6°;
1.4–9.7°) [48].

3DMA Comparisons
Twenty-two studies compared the joint angles calculated
by wearable sensors, both custom and commercial, to a
‘gold standard’ 3DMA system (Table 3). Studies that
used same segment tracking (i.e. motion analysis
markers directly on the wearable sensors) were reported
in 7 studies. Opal wearable sensors were compared to a
3DMA system during simulated swimming (multiplane
movement). The largest difference between the two sys-
tems occurred at the elbow (RMSE 6–15°), with the least
occurring at the wrist (RMSE 3.0–5.0°) [45]. Xsens was
compared to codamotion during single plane movement,
with the addition of a dynamic anatomical calibration
trial [30]. The largest difference occurred at the elbow
(5.16° ± 4.5 to 0.54° ± 2.63), and the least difference at
the shoulder (0.65° ± 5.67 to 0.76° ± 4.40) [30]. Xsens was
compared to Optotrak with consistent differences be-
tween systems across all DOFs of the shoulder (RMSE
2.5–3.0°), elbow (RMSE 2.0–2.9°), and wrist (RMSE 2.8–
3.8°) [24].
Three studies investigated the performance of wear-

able sensors using different fusion methods to amalgam-
ate the data and compared this to a ‘gold standard’
system. Zhang and colleagues [34] compared the accur-
acy of their own algorithm to two pre-existing algo-
rithms. Comparing Xsens to the BTS Optoelectronic
system, their methodology resulted in less error (RMSE
= 0.08°, CC = 0.89 to 0.99) across 5DOF compared to the
two other methods [34]. The addition of a magnetom-
eter in the analysis of data was also investigated using
the EKF- and non-EKF-based fusion algorithm [15]. The
latter produced the least difference between the two sys-
tems, irrespective of the speed of the movement and
whether or not a magnetometer was included. In con-
trast, the EKF fusion algorithm resulted in the largest
difference from the reference system, particularly for fast
movements where magnetometer data was included
(7.37° ± 4.60 to 11.91° ± 6.27) [15]. The level of custom-
isation to achieve these results is summarised in Table 4.
One study compared the difference between YEI

Technology (YEI technology, Portsmouth, OH) wearable
sensors and Vicon during three customised calibration
methods for the elbow, which resulted in RMSEs that
ranged from 3.1 to 7.6° [69].
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Reliability
Adequate to excellent agreement was reported for 2DOF
at the shoulder (ICC 0.68–0.81) and poor to moderate
agreement for the 2DOF at the elbow (ICC 0.16–0.83).
The wrist demonstrated the highest overall agreement
with ICC values ranging from 0.65 to 0.89 for 2DOF [73].

Risk of Bias
The sample sizes of the included studies were mostly in-
adequate, with 30% including single participants
(Table 1). Twenty-eight percent of the included studies
were conference papers, providing limited information.

Discussion
This systematic review described the characteristics of
wearable sensors that have been applied in research and
clinical settings on the upper limb, the populations with
whom they have been used with, and their established
psychometric properties. The inclusion of 66 studies
allowed for a comprehensive synthesis of information.
Similar to other systematic reviews on wearable sen-

sors, commercial wearable sensors, as opposed to cus-
tom designed, were reported in most studies (83%) [17].
One benefit for users of commercial wearable sensors is
the user-friendly nature of the associated manufacturer
guidelines and processing software, including in-built fu-
sion algorithms and joint calculation methods. However,
the studies that utilised commercial hardware often cus-
tomised aspects of the software (i.e. fusion algorithm,
calibration method, anatomical segment definition, and
the kinematic calculation). Therefore, the validity and re-
liability of an entirely commercial system (hardware and
software) for use in the upper limb remains unknown.
Customisation impacts the clinical utility of the wearable
sensor systems, especially if there are no support
personnel with appropriate knowledge and expertise.
Of the studies reviewed, there was no consensus on

the procedures to follow for using wearable sensors on
the upper limb. The placement of the wearable sensors
varied and, in some cases, was poorly described.

Manufacturer guidelines for placement of commercial
wearable sensors were not referred to, which lead to ap-
parent differences in placement for studies that utilised
the same commercial brand. Multiple fusion algorithms
were reported, with no clear outcome about which was
best suited to a specific joint or movement. The level of
customisation of fusion algorithms makes it difficult to
compare between studies, and often, the specifics of the
algorithm were not readily available, limiting replication.
Similar inconsistencies and a lack of consensus were re-
ported in other systematic reviews investigating use of
wearable sensors [16, 87]. Without clear guidelines,
measurement error can be introduced and/or exacer-
bated depending on the procedures followed.
The methods of calibration also varied between stud-

ies, with a static anatomical calibration the most com-
monly utilised method (typically adopting a neutral pose,
standing with arms by the side and palms facing for-
ward, as recommended by most manufacturers). Dy-
namic anatomical calibration was often customised to
suit the needs of the study and the joint being measured.
For example, dynamic anatomical calibration of the
elbow varied from repetitions of flexion and extension at
various speeds [59], to the rapid movement of the arm
from 45° to neutral [42]. Details of the dynamic anatom-
ical calibrations were omitted in some studies, limiting
replication. More pertinent for the calculation of joint
kinematics is anatomical calibration as compared to sys-
tem calibration, with the type of calibration (i.e. static or
dynamic) and movements of the dynamic anatomical
calibration, having a significant impact on the accuracy
of wearable sensors [69].
Of the 66 studies included in this review, almost half

(45%) were validation studies with the remaining studies
using wearable sensors as an outcome measure. Over
one third (29%) were conference proceedings in the field
of engineering, thus limiting the amount of information
available. The median sample size was 7.6 participants
per study; only one study was considered to have an ad-
equate sample size for the validation of a measurement

Table 4 Summary of the software customisation reported by the authors for validation studies that used the same segment
tracking

First author Sensor hardware Software

Sensor fusion algorithm Calibration Anatomical segment
definition

Kinematic
calculation

Robert Lachaine et al. [24] Commercial—Xsens MVN Manufacturer Manufacturer Custom Custom

Ligorio et al. [69] Commercial—YEI Technology Custom Custom Custom Custom

Fantozzi et al. [45] Commercial—ADPM Opal Custom Custom Custom Custom

Gil-Agudo et al. [30] Commercial—Xsens MTx Custom Custom Custom Custom

Miezal et al. [15] Commercial—Xsens Did not report Did not report Custom Custom

Lambretcht et al. [62] Commercial—InvenSense MPU9150 chip Custom Custom Custom Custom

Zhang et al. [34] Commercial—Xsens MTx Custom Manufacturer Custom Custom
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tool as per the COSMIN guidelines [19]. The majority
(78%) of the results were obtained from healthy adults,
with clinical populations (12%) and those under the age
of 18 (1.5%) not well represented. Research investigating
the use of wearable sensors to measure lower limb kine-
matics has demonstrated a level of accuracy with clinical
populations and children. Errors < 4° were reported for
elderly individuals with hemiparesis [88] and RMSEs be-
tween 4.6 and 8.8° for children with spastic cerebral
palsy [10]. There is potential for wearable sensors to be
applied to the upper limb of these populations; however,
more research is required to determine the optimal pro-
cedures prior to implementation in clinical practice.
The validity and reliability of wearable sensors when ap-

plied to the upper limb has not been clearly described to
date. When compared to a robotic device, the commercial
wearable sensors with customised software recorded er-
rors below McGinley’s [7] suggested 5.0° threshold. Less
than 3.9° was reported for replica/simulated movements
of the wrist in 3DOF [28, 46, 48, 56], < 3.1° for 2DOF at
the elbow [46, 48, 56], and < 2.5° for 1DOF (flexion/exten-
sion) at the shoulder [48]. Shoulder internal and external
rotation resulted in the largest error (3.0–9.7°) [48], and
therefore, results for this movement should be interpreted
with caution.
The next section will discuss ‘in vivo’ studies with

3DMA as a pseudo gold standard. Studies that made a dir-
ect comparison between the wearable sensors and 3DMA
system (i.e. used the same segment tracking) demon-
strated differences that exceeded the suggested 5.0°
threshold, with up to 15.0° difference reported for the
elbow. However, depending on the software specifications
and level of customisation, a difference of < 0.11° (3DOF
shoulder), < 0.41° (2DOF elbow), and < 2.6 (2DOF wrist)
was achievable. The range in difference observed between
the two systems is indicative that wearable sensors are still
largely in a ‘developmental phase’ for the measurement of
joint angle in the upper limb.
Consistent with prior findings, error values were

unique to the joint and movement tasks being measured.
Most of the tasks involved movements in multiple
planes (i.e. reaching tasks), which resulted in more error
compared to studies that assessed isolated movement in
a single plane (i.e. flexion and extension). Measuring
multiple planes of movement poses a further challenge
to motion analysis and needs careful consideration when
interpreting the results [89].

Limitations
Due to the heterogeneity in the reported studies, a
meta-analysis was not appropriate given the variance in
sample sizes, movement tasks, different procedures, and
statistical analyses used. It was also not possible to apply
a standard assessment of quality and bias due to the

diversity of the studies. The inclusion of small samples
(30% single participant) is a potential threat to validity,
with single participant analysis insufficient to support
robustness and generalisation of the evidence. The inclu-
sion of conference papers (28%) meant that many papers
provided limited detail on the proposed system and val-
idation results. Small sample sizes and the inclusion of
mostly healthy adults means the results of this review
cannot be generalised to wider clinical populations. In
addition, studies that utilised different segment tracking
(i.e. 3DMA markers were not mounted on the wearable
sensor) were not further analysed as it was not possible
to delineate between the sources of error.

Conclusion
Wearable sensors have become smaller, more user-friendly,
and increasingly accurate. The evidence presented suggests
that wearable sensors have great potential to bridge the gap
between laboratory-based systems and the goniometer for
the measurement of upper limb joint angle during dynamic
movement. A level of acceptable accuracy was demon-
strated for the measurement of elbow and wrist flexion/ex-
tension when compared to a robotic device. Error was
influenced by the fusion algorithm and method of joint cal-
culation, which required customisation to achieve errors <
2.9° from known angles on a robotic device. Higher error
margins were observed in vivo when compared to a 3DMA
system, but < 5° was achievable with a high level of custom-
isation. The additional level of customisation that was often
required to achieve results with minimal error is particu-
larly relevant to clinicians with limited technical support,
and critically, when using a system ‘off the shelf ’, the ex-
pected level of accuracy may not be comparable to the find-
ings reported in this review.
With this technology rapidly evolving, future research

should establish standardised protocol/guidelines, and
subsequent reliability and validity for use in the upper
limb, and in various clinical populations. Direct compar-
isons with the gold standard (i.e. same segment tracking)
is needed to produce results that are most meaningful.
We recommend and encourage the use of wearable sen-
sors for the measurement of flexion/extension in the
wrist and elbow; however, this should be combined with
outcome measures that have demonstrated reliability
and validity in the intended population.
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