
O R I G I N A L  R E S E A R C H  A R T I C L E Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Nicholson et al. Sports Medicine - Open           (2024) 10:44 
https://doi.org/10.1186/s40798-024-00708-6

Sports Medicine - Open

*Correspondence:
Mitchell Nicholson
mitchell.nicholson@hdr.qut.edu.au
1School of Exercise and Nutrition Sciences, Faculty of Health, Queensland 
University of Technology (QUT), Victoria Park Road, Kelvin Grove, Brisbane, 
QLD 4059, Australia
2Physical Activity, Sport and Exercise Research Theme, Faculty of Health, 
Southern Cross University, Gold Coast, QLD, Australia
3Manna Institute, Southern Cross University, Gold Coast, Australia

Abstract
Background Research into esports suggests that e’athletes experience physiological stressors and demands during 
competition and training. The physiological demands of esports are poorly understood and need to be investigated 
further to inform future training guidelines, optimise performance outcomes, and manage e’athlete wellbeing. 
This research aimed to quantify the metabolic rate of esports gameplay and compare this outcome with heart rate 
variability within expert e’athletes.

Results Thirteen healthy male participants ranked within the top 10% of their respective esports title participated 
in the study (age = 20.7 ± 2.69 years; BMI = 24.6 ± 5.89 kg·m− 2). Expired gas analysis indirect calorimetry measured 
gas exchange during rest and gaming. Compared to resting conditions, competitive esports gameplay significantly 
increased median energy expenditure (1.28 (IQR 1.16–1.49) kcal·min− 1 vs. 1.45 (IQR 1.20–1.77) kcal·min− 1, p = .02), 
oxygen consumption (0.27 (IQR 0.24–0.30) L·min− 1 vs. 0.29 (IQR 0.24–0.35) L·min− 1, p = .02) and carbon dioxide 
production (0.20 (IQR 0.19–0.27) L·min− 1vs. 0.27 (IQR 0.24–0.33) L·min− 1, p = .01). Competitive gameplay also resulted 
in a significant increase in heart rate (84.5 (IQR 74.1–96.1) bpm vs. 87.1 (IQR 80.3–104) bpm, p = .01) and decrease in 
R-R interval’s (710 (IQR 624–810) ms vs. 689 (IQR 579–747) ms, p = .02) when compared to rest. However, there were no 
significant differences in time or frequency measures of heart rate variability.

Conclusions The data reveal increased physiological responses to metabolic rate, energy expenditure and 
cardiovascular function to esports game play within expert e’athletes. Further physiological research into the 
physical demands on e’athletes, the influence of different training programs to esport performance, and the added 
multivariate determinants to elite level esport performance are warranted.
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Background
Competitive esports athletes (e’athletes; [1]) face stress-
ors and demands within training and competition, both 
psychologically and physiologically [2–4]. Due to the 
highly competitive, and sometimes lucrative, nature of 
esports, various psychophysiological stress responses 
under competitive conditions may be experienced [5]. 
Esport performance does not involve large bodily move-
ments; rather, e’athletes require fine-motor coordina-
tion and perceptual-cognitive abilities to perform at a 
high level [5]. Preliminary research into the structure of 
training within esports has identified no specific training 
guidelines or adoption of player monitoring [6]. Compar-
atively, traditional sport settings quantify various internal 
(e.g., heart rate (HR), oxygen uptake (V̇O2), blood lac-
tate, perceived exertion, etc.) and external (e.g., running 
distances, power output, speed, repetitions, etc.) stress-
ors or loads within athletes to monitor how individuals 
are responding to the demands of training or competi-
tion to optimise health and performance [7]. Despite the 
rapid increase in popularity of esports, the physiologi-
cal demands and stressors of esport are poorly under-
stood [3, 8]. By investigating the physiological demands 
of esports, insights could be identified that may inform 
training guidelines to optimise performance and the 
health and wellbeing of e’athletes.

Expired gas analysis indirect calorimetry (EGAIC) 
is considered the gold-standard in measuring human 
energy expenditure through pulmonary gas exchange [9, 
10]. The application of calorimetry in sport and medical 
physiology often utilises EGAIC to determine individ-
ual energy expenditure by measuring the rate of oxygen 
consumption (V ̇O2) and carbon dioxide production 
(V̇CO2) within various settings and activities. Dividing 
V̇CO2 with V̇O2 yields the respiratory exchange ratio 
(RER), which for conditions of steady state metabolism 
and normal ventilation enables the calculation of energy 
expenditure and each of carbohydrate and fat oxidation 
[11, 12] based on the higher CO2 production for aero-
bic (mitochondrial respiration) carbohydrate oxidation. 
For example, at rest or steady state exercise the body will 
metabolise predominantly fat through cellular respira-
tion (RER for pure fat metabolism = 0.7 and 4.73 kcals·L− 1 
V̇O2), although as exercise or activity intensity increases, 
the body will shift to metabolising carbohydrates (RER 
for pure carbohydrate oxidation = 1.0 and 5.05 kcals·L− 1 
V̇O2)[11, 12].

Previous research has shown that the energy expendi-
ture of sedentary activities (e.g., reading, typing, watch-
ing TV, etc.) is ≤ 1.5 metabolic equivalents (METs), 
where one MET is equivalent to an average resting V ̇O2 
of 3.5  ml·kg−1·min−1 within healthy individuals [13, 14]. 
While esports involves sitting, the increased movement 
and cognitive demand distinguish them from traditional 

sedentary activities. Most research has focused on com-
paring active video gaming energy expenditure research 
(e.g., Wii Sports, XBOX Kinect, or Virtual Reality, that is 
played standing) and casual video gaming (e.g., control-
ler or keyboard and mouse-based that is sedentary), with 
conflicting findings across settings [15]. Two studies have 
shown that children and adults expend significantly more 
energy during gameplay than rest [16, 17]. It is impor-
tant to note that video games (previously described) 
are different to esports, as video games are designed to 
be played leisurely, whereas esports are designed to be 
played competitively.

Only three studies have investigated the energy expen-
diture of esports within amateur e’athletes, yielding con-
flicting results [18–20]. A case report by Haupt et al. 
[18] and findings from Zimmer et al. [19] showed that 
esports gameplay did not significantly increase V ̇O2, 
V̇CO2, RER, or energy expenditure when compared to 
rest, and even suggested that gameplay did not result in 
a stress response when analysing blood lactate, cortisol, 
and glucose responses [19]. Whereas, Kocak [20] showed 
that amateur level League of Legends e’athletes expend 
40% more energy or 1.9 METs during gameplay when 
compared to rest, which could be classified as light physi-
cal activity. While this research provides valuable insight 
into the physiological demands of esports and video gam-
ing, there are recurrent methodological limitations; for 
instance, failure to control for variables that affect energy 
expenditure (i.e., caffeine or alcohol intake, diet, envi-
ronmental conditions, sleep, transport, physical activity, 
wellness, fatigue, etc.), poorly defined resting conditions, 
and sample amateur e’athletes. Compher et al. [21] have 
identified the importance of control variables when mea-
suring metabolic rate, which should be followed within 
future esports research for accurate interpretation and to 
enable comparisons across findings. The gameplay con-
ditions presented in Haupt et al. [18] and Zimmer et al. 
[19] were limited by non-competitive environments, and 
research needs to investigate the metabolic demands of 
expert e’athletes within competitive environments. Cur-
rently, there is a lack of physiological research in esports, 
and the limitations described highlight that the current 
research lacks methodological consideration. The physio-
logical demands of competitive esports are poorly under-
stood, and further research is necessary to support the 
health and wellbeing of e’athletes.

Heart rate variability (HRV) recording is non-invasive, 
low-cost, and simple to administer, with most of the 
physiological research in esports using this method to 
assess autonomic regulation during the activity. Within 
applied settings, HRV can also provide insight into an 
individual’s ability to cope with internal and external 
stressors, where low HRV is associated with impaired 
ANS regulation [22]. Research within esports has shown 
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a significant decrease in R-R interval reflecting an 
increase in heart rate during gameplay when compared 
to rest [23, 24]. Additionally, e’athletes within winning 
teams have demonstrated a significantly higher percent-
age of successive normal sinus RR intervals more than 
50ms (pNN50) and root mean square of successive dif-
ferences (RMSSD) measurements post-game, when com-
pared to losing teams, which has been hypothesised to be 
due to poor self-regulation or greater recovery [25, 26]. 
RMSSD and pNN50 are time-domain measurements 
which are used to estimate the vagally mediated changes 
in HRV [27]. Other research has added to these find-
ings, stating that HRV is susceptible to inter-participant 
variability in results [23, 24], which is hypothesised to 
be due to different games, in-game roles, or physiologi-
cal differences in body composition and physical activity 
levels. Inter-participant differences in HRV could also be 
explained by the individual’s appraisal of various internal 
and external stressors during gameplay [22], which can 
be different from training to competition [28]. Addition-
ally, Welsh et al. [29] have identified that HRV research 
within esports currently lacks theoretical underpinning 
and a lack of methodological consideration, identifying 
that further investigation is needed within esports.

The study aimed to quantify individual RMR and com-
pare it to gameplay metabolic rate (GMR), whilst simul-
taneously measuring HRV to investigate autonomic 
regulation during competitive gameplay within expert 
e’athletes. We hypothesised that GMR would be sig-
nificantly higher than RMR across the participant group 
while decreasing markers of HRV and vagal tone during 
gameplay.

More specifically, the study aimed to answer the fol-
lowing research questions:

1. How does competitive esports gameplay affect 
metabolic rate within expert e’athletes?

2. How does competitive esports gameplay affect HRV 
among expert e’athletes?

3. What is the relationship between HRV and 
metabolic rate during rest and gameplay among 
expert e’athletes?

Methodology
Participants were recruited from a local intervarsity 
esports academy, which competes within the national 
intervarsity league for various game titles, with some 
individuals also competing within professional leagues. 
Eligibility criteria allowed for participants to play any 
game title based on PC, with participants required to be 
ranked within the top 10% of their game, which equates 
to > Diamond (Overwatch), > Diamond 2 (Valorant), > 
Champion 1 (Rocket League), > Platinum 4 (League of 

Legends), and > Legendary Eagle (Counter-Strike: Global 
Offensive). Participants also had to be apparently healthy, 
with no acute or chronic conditions known to affect 
metabolic rate or cardiac response, and no consumption 
of medications that affect metabolic rate. Physical activ-
ity levels were accounted for within the control measure 
questionnaire, with participants totalling their weekly 
activity minutes. A priori sample size calculation was 
performed (G*power software version 3.1.9.6) through 
a one-tailed t-test, using Cohen’s d = 0.75 determined 
from previous research [30], α of 0.05, and a power of 0.8, 
resulting in the study requiring 13 participants.

EGAIC was measured through a silicone mouthpiece 
(Hans Rudolph Adult Silicone Mouthpiece) hosting a 
T-valve where a 3-L latex mixing bag modified with a 
2 cm diameter circular inferior exhaust opening to allow 
airflow from the bag at higher tidal volumes was fitted to 
the expired side of the mouthpiece. The custom expired 
mixing bag allowed for variable volume performance of 
the mixing bag, and details of the device and its valida-
tion have been previously published [31]. The mixing bag 
contained a gas sample line that allowed gas sampling 
from the upper central region of the bag (Tygon Tubing, 
ID = 2.8  mm, OD = 3.9  mm; Fisher Scientific Company, 
Pittsburgh, Pa., USA), which was connected to a set of 
electronic CO2 and O2 analysers (AEI Technologies) and 
gas flow pump. Expired gas signals of the prior breath 
were acquired for 100ms at the start of each inspired 
breath and aligned to the timing of the start of inspira-
tion based on a pre-determined measured time-delay. 
On the inspired side of the mouthpiece, ventilation was 
measured by an infrared flow-turbine (UVM, VacuMed, 
Ventura, CA, USA). Data acquisition was performed 
through custom made LabView software (LabVIEWTM, 
Austin, TX), and commercial electronic acquisition 
devices (National Instruments, Austin, TX). This custom 
software has been validated within previous studies and 
validated against commercial systems [31].

Prior to data collection for each participant, the gas 
analysers and flow turbine were calibrated. This was per-
formed using the custom-developed LabVIEW software 
(LabVIEW, National Instruments, Austin, TX, USA) 
through a computerised custom-developed data acquisi-
tion system (National Instruments). Before all tests, the 
gas analysers were calibrated with medical grade and cer-
tified calibration gas (3.2% CO2, 16.2% O2, balance N2), 
room air (20.95% O2, 0.04% CO2, balance N2), and 100% 
nitrogen, with regressions calculated within the software. 
Turbine calibration was performed using a 3-L calibra-
tion syringe (Hans Rudolph, Kansas City, Mo., USA). The 
EGAIC system and methodology is discussed in more 
detail by Kim and Robergs [31].

The ECG equipment (Custo-Cardio 300) was fit-
ted to each participant using a standardised 5-lead ECG 
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configuration. The ECG leads were attached to the par-
ticipants using gel electrodes placed over the spine of both 
scapulae, the iliac crest of both ilia, and between the 4th 
and 5th intercostal space along the mid-axillary line of 
the left side of the torso. The Custo-diagnostic software 
converted the cardiac electrical signal from the heart to 
R-R intervals during each condition. This system was con-
nected via Bluetooth to a dedicated laptop running soft-
ware (Custo-Diagnostic Software, Custo-Med Gmbh), 
with the device attached to the participant. ECG data was 
visually inspected for technical artefact, and abnormal R-R 
intervals were removed from the dataset. Technical arti-
fact may result from excessive movement of participant, 
or signal disruption at the electrode-skin connection, as 
the R peak duration consistently differs from real heart-
beats. Visual inspection of ECG data is recommended 
over using automatic correction filters in Kubios, as they 
can lead to the removal of real heartbeats [32]. Data were 
also inspected for physiological artefact, such pre-ventric-
ular contraction, and fibrillations, however these were not 
identified within the included participants. As the testing 
environment and experimental condition required mini-
mal movement of the participant, data was relatively clear 
of technical artifact. Excel files derived from the ECG soft-
ware (.csv) were converted into text files (.txt) and pro-
cessed within HRV analysis software, Kubios [33]. This 
software was used to calculate the following HRV param-
eters: RMSSD and pNN50 within the time domain, and 
high frequency (HF) and low/high frequency ratio (LF/
HF), as they best represent vagal tone [32] Table 1.

Procedures
E’athletes were instructed to attend the laboratory soon 
after waking, avoiding physical activity (transport via bus 
or car). Prior to attendance, participants were informed 
that they needed to be fast for at least 5 h before testing, 
at least 24 h abstention from alcohol, 2 h from nicotine, 
8-hours abstention from caffeinated products, as well as 

refraining from moderate-high intensity exercise per-
formed 24 h before data collection [21]. Participants were 
also instructed to sleep for at least 7  h before data col-
lection, as it has been shown that achieving 6  h or less 
of sleep could impair cognitive and physical performance 
[34]. Height and weight were measured, and body mass 
index (BMI) was calculated. All participants were asked 
to complete a control measures questionnaire to ensure 
adherence to pre-testing instructions (see Additional File 
1: Table  1). This testing session was rescheduled if par-
ticipants did not adhere to control measures. This ques-
tionnaire also contained the Stafford Sleepiness Scale 
[35] to assess the level of sleepiness, and a wellness ques-
tionnaire which asked the participant to rate their levels 
of fatigue, sleep quality, general muscle soreness, stress 
levels, and mood on a Likert scale from one to five [36]. 
The ESSA Adult Pre-Exercise Screen Tool [37] was used 
to identify any major health concerns, and collect over-
all weekly physical activity duration. The physical activity 
duration was used to determine if participants reached 
the World Health Organisation (WHO) physical activity 
guidelines of 150  min of moderate-to-vigorous aerobic 
exercise a week [38]. A question was also added regard-
ing medication usage; if an individual indicated that they 
consumed a medication that affected metabolic rate or 
answered ‘yes’ to any of the first six questions, they were 
excluded from the study.

The participant was fitted with the 5-lead ECG and 
Hans-Rudolph silicone mouthpiece to assess RMR and 
resting HRV. They were instructed to sit quietly and 
upright in their regular gaming chair. The testing envi-
ronment was temperature-controlled, quiet, and dimly 
lit. The participant sat quietly, instructed not to talk, for a 
total of 20 min [21].

Immediately following the resting condition, the par-
ticipant loaded into a solo-queued ranked game. The par-
ticipant was seated within the same chair as the resting 
condition and fitted with the Hans Rudolph Mouthpiece 
(Hans Rudolph, Kansas City, Mo., USA). The start of all 
game titles was defined as the moment they were in the 
game. For League of Legends, this point was defined as 
after the champion select and when the character entered 
summoners rift. For Valorant and Counter Strike: Global 
Offensive this was defined as when the character could 
buy. For Rocket League, this was defined as when the 
count-down into the game had finished, and the 5  min 
round had started. Due to the mouthpiece configuration, 
e’athletes were instructed to use in-game ‘pings’ to com-
municate and were instructed to avoid attempting to talk.

The raw breath-by-breath data was exported as an csv. 
File into commercial graphics fitting software, Prism 
GraphPad (Prism, GraphPad Software, La Jolla, CA, 
USA). The raw data included the absolute values for 
V̇O2, V ̇CO2, RER, VE and two measures of energy 

Table 1 HRV variables that were collected and derived from 
Laborde et al. [26]
Domain Variable Description Physiologi-

cal origin
Time-domain RMSSD Root Mean Square 

of Successive 
Differences

Vagal Tone

pNN50 Percentage of suc-
cessive normal sinus 
RR intervals more 
than 50ms

Vagal Tone

Frequency-domain HF High Frequencies Vagal Tone
LF/HF Low Frequencies/ 

High Frequencies 
Ratio

Mix of sym-
pathetic 
and vagal 
activity
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expenditure. The software’s energy expenditure calcu-
lation converted the RER measure into caloric equiva-
lent and this was multiplied by the corresponding V̇O2 
value. The Peronnet and Massicotte [39] equation for 
energy expenditure was also calculated for each breath as 
it is shown to have the greatest metabolic power [40]. The 
first and last 5 min periods of the RMR data were deleted, 
and the middle 10 min was used [21].

For GMR, the HRV and EGAIC data was cut from 
game start to end as defined earlier for each game. Errant 
breaths, swallows, or coughs were first removed from the 
EGAIC data to not skew the response. These were identi-
fied as breaths that were different to the mean of the sur-
rounding four data points by more than three times the 
standard deviation of those four points [41–43]. The HRV 
and EGAIC data was averaged and analysed for the entire 
game duration for each title (Rocket League ≈ > 5  min, 
League of Legends ≈ 25–45  min, Counter-Strike: Global 
Offensive ≈ 35 min, and Valorant ≈ 25 min).

Data analysis was performed within Jamovi [44, 45]. 
All demographic information was expressed as means, 
standard deviations and frequencies. The physiologi-
cal data was assessed for normality, where it was shown 
to be non-parametric. The data were then presented as 
medians and 25th and 75th percent interquartile ranges. 
To answer the first two research questions, the Wilcoxon 
signed-rank test was used as the data meets the three 
assumptions for this test. The third research question 
used a Spearman correlation matrix to investigate the 
relationship between all outcome variables for rest and 
gameplay. Significance was identified when p ≤ .05.

Results
A total of 13 male participants completed the project and 
their demographic characteristics and individual char-
acteristics and metabolic changes to each condition are 
presented in Tables 2 and 3, respectively.

Table 2 Demographic characteristics of participants
Participants, n = 13 (Mean ± SD)

Age (years) 20.7 ± 2.69
Height (cm) 183 ± 7.89
Weight (kg) 82.1 ± 18.6
BMI (kg·m− 2) 24.6 ± 5.89

N (%)
Reaching WHO PA Guidelines 4 (30.8)
Game Title
Rocket League 5 (38.5)
League of Legends 4 (30.8)
Overwatch 2 (15.4)
Valorant 1 (7.7)
Counter Strike: Global Offensive 1 (7.7)
Note SD = standard deviation; Reaching WHO PA Guidelines = Number of 
participants exceeding 150  min of moderate-to-vigorous physical activity a 
week

Ta
bl

e 
3 

In
di

vi
du

al
 c

ha
ra

ct
er

ist
ic

s o
f m

et
ab

ol
ic

 c
ha

ng
es

 b
et

w
ee

n 
re

st
in

g 
an

d 
ga

m
ep

la
y 

m
et

ab
ol

ic
 ra

te
s

ID
#

BM
I

G
am

e
G

am
e 

ge
nr

e
Re

st
in

g 
m

et
ab

ol
ic

 ra
te

G
am

ep
la

y 
m

et
ab

ol
ic

 ra
te

VE
V̇O

2
V̇C

O
2

RE
R

EE
PM

 E
E

VE
V̇O

2
V̇C

O
2

RE
R

EE
PM

 E
E

1
19

.9
LO

L
M

O
BA

5.
25

4.
07

3.
36

0.
83

1.
12

4.
84

7.
63

6.
19

4.
10

0.
66

1.
66

7.
09

2
24

.7
O

W
FP

S
12

.6
3

3.
69

3.
66

0.
87

1.
53

6.
86

8.
58

4.
49

2.
85

0.
66

1.
77

7.
41

3
30

.6
O

W
FP

S
10

.9
6

3.
85

3.
19

0.
85

1.
94

8.
34

12
.3

8
4.

60
4.

12
0.

89
2.

34
9.

90
4

20
.7

LO
L

M
O

BA
6.

29
3.

25
2.

52
0.

80
1.

17
5.

05
7.

32
3.

13
2.

98
0.

98
1.

14
4.

94
5

18
.9

RL
Sp

or
ts

11
.9

5
5.

15
5.

27
1.

00
1.

54
6.

68
7.

99
4.

05
4.

36
1.

10
1.

20
5.

20
6

19
.5

RL
Sp

or
ts

10
.2

6
4.

31
3.

48
0.

82
1.

47
6.

33
10

.2
8

3.
90

3.
56

0.
92

1.
35

5.
83

7
33

.1
CS

G
O

FP
S

7.
71

2.
72

2.
44

0.
90

1.
49

6.
43

9.
63

3.
22

2.
97

0.
91

1.
78

7.
66

8
29

.1
RL

Sp
or

ts
5.

11
2.

69
1.

92
0.

73
1.

16
5.

00
11

.3
8

4.
98

4.
14

0.
85

2.
17

9.
36

9
22

.2
RL

Sp
or

ts
10

.2
6

2.
33

2.
32

0.
92

1.
02

4.
51

8.
71

3.
28

3.
06

0.
92

1.
43

6.
18

10
19

.0
LO

L
M

O
BA

6.
70

3.
55

3.
05

0.
87

1.
16

5.
02

8.
18

3.
48

3.
12

0.
87

1.
14

4.
99

11
32

.5
RL

Sp
or

ts
5.

95
2.

77
2.

14
0.

77
1.

39
5.

99
8.

38
2.

82
2.

57
0.

90
1.

45
6.

26
12

18
.2

LO
L

M
O

BA
4.

75
2.

59
2.

33
0.

88
0.

78
3.

36
5.

73
3.

34
3.

18
0.

95
1.

02
4.

37
13

31
.9

VL
FP

S
6.

65
2.

88
2.

06
0.

75
1.

28
5.

56
8.

70
3.

13
2.

96
0.

94
1.

50
6.

38
N

ot
e 

BM
I =

 B
od

y 
M

as
s 

In
de

x;
 L

O
L =

 L
ea

gu
e 

of
 L

eg
en

ds
; O

W
 =

 O
ve

rw
at

ch
; R

L =
 R

oc
ke

t-
Le

ag
ue

; C
SG

O
 =

 C
ou

nt
er

 S
tr

ik
e:

 G
lo

ba
l O

ffe
ns

iv
e;

 V
L =

 V
al

or
an

t; 
M

O
BA

 =
 M

ul
tip

la
ye

r 
O

nl
in

e 
Ba

tt
le

 A
re

na
; F

PS
 =

 F
irs

t 
Pe

rs
on

 S
ho

ot
er

; 
Sp

or
ts

 =
 S

po
rt

s S
im

ul
at

io
n;

 V
E 

= 
Ve

nt
ila

tio
n;

 V
Ȯ
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Table  4 below presents the descriptive statistics for 
EGAIC metabolic rates and HRV variables and the Wil-
coxon signed ranked paired t-test results. For EGAIC, all 
values showed significant differences with moderate to 
large effect sizes, apart from VE and RER. For HRV, HR 
and RR were significantly different with large effect sizes.

Tables  5 and 6 display the results of a Spearman 
correlation matrix for both resting and gameplay 
measures for HRV and EGAIC variables. Both tables 
demonstrate no correlation between any HRV or 
EGAIC variables measured for either resting or game-
play conditions.

Fig. 1 Participant median values for EGAIC variables between rest and gameplay conditions
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Discussion
The aim of the study was to investigate the metabolic 
demands and HRV during esports gameplay. The hypoth-
esis was supported with significantly higher metabolic 
rates displayed within the GMR conditions across the 
group when compared to the RMR condition. For HRV 

variables, heart rate (and by definition, RR-intervals) 
were the only significantly different variables across con-
ditions, which does not support the original hypothesis.

Our results demonstrated that e’athletes expended sig-
nificantly more energy during solo-queued ranked game-
play compared to rest. Differences in energy expended 

Fig. 2 Individual median values for HRV variables between rest and gameplay conditions
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between solo-queue and rest were identified through 
increases in V̇O2, V̇CO2, and both measures of EE, 
supported by large effect sizes. Our results showed a 17% 
increase in EE during gameplay, which is less than half 
the game-play induced increase when compared to previ-
ous research that showed multiplayer online battle arena 
(MOBA) players expend up to 40% more energy during 
gameplay [20]. Increases in energy expenditure can be 
partly explained through an increase in activity, where 
Kocak [20] demonstrated a strong significantly positive 
correlation between actions per minute and MET’s. The 
increases in EE in the current investigation are different 
from previous findings, which showed that esports game-
play does not affect energy expenditure, O2 consumption, 
or CO2 production among amateur Counter-Strike and 
FIFA players [18, 19]. Differences across studies could be 
due to our participants being expert e’athletes when com-
pared to the amateur participants within previous stud-
ies and different methodologies used as our study used a 
controlled resting condition for comparison to gameplay. 
These findings suggest that higher level e’athletes, differ-
ent game title, or more competitive environments may 
elicit higher metabolic rates, however this requires fur-
ther investigation.

The median RER value for the RMR condition was 0.84 
(0.80–0.88), and increased to 0.91 (0.86–0.94) during the 
GMR condition, suggesting a potential increase in glu-
cose oxidation during sedentary activity. Notably, these 
findings did not reach statistical significance in our small 
sample, and the observed 0.84–0.93 shift may be subject 
to chance variation. However, an increase in RER of this 
magnitude is not generally observed within sedentary 
activities that involve minimal skeletal muscle recruit-
ment. Hyperventilation, a common factor observed in 
laboratory testing settings due to participant anxiety, was 

not observed within either condition, and the increase in 
RER may be due to greater carbohydrate oxidation dur-
ing gameplay. The observed RER results are different 
from previous studies by Zimmer et al. [19] and Troubat 
et al. [46] who observed a significant time effect on RER, 
with significantly lower values in the post-phase of gam-
ing. When converting the RER values observed within 
our study into a percentage of energy derived from car-
bohydrate oxidation, differences across conditions were 
48.3% carbohydrate oxidation in the RMR to 71.9% car-
bohydrate oxidation in the GMR condition [39]. This 
is supported by previous findings where a cognitively 
demanding incongruent Stroop task elicited a signifi-
cantly higher RER when compared to a congruent Stroop 
and rest conditions [47].

Increased utilisation of carbohydrates as the primary 
fuel source is generally seen when exercise intensity 
increases and there is high skeletal muscle motor unit 
recruitment (e.g., walking into high-intensity running). 
However, within the GMR condition, participants were 
seated while playing their respective esports title, which 
may indicate the increase in carbohydrate oxidisation 
within the GMR condition could be due to the increase 
in neural activity. This is a plausible explanation as the 
brain relies on glucose as the main energy supply and 
accounts for 20% of glucose metabolism in the body [48, 
49]. Evidence also supports this interpretation, as it high-
lights results from prior research of significant decreases 
in blood glucose levels under increased neural activity, 
where greater mental load and task complexity increases 
the demand for glucose [50, 51]. Neuroimaging through 
positron emission tomography, has shown that visual 
stimulation, mental activity, and exhaustive exercise 
significantly decrease the oxygen-glucose index when 
compared to rest, highlighting the higher utilisation of 

Table 4 Descriptive statistics and analysis of group EGAIC and HRV between resting metabolic rate and gameplay metabolic rate
N = 13 Resting metabolic rate, median (IQR 25–75) Gameplay metabolic rate, median (IQR 25–75) p-value Effect size
EGAIC variables
VE (L/min) 6.70 (5.95–10.3) 8.58 (7.99–9.63) 0.13 − 0.36
V̇O2 (L/min) 0.27 (0.24–0.30) 0.29 (0.24–0.35) 0.02* − 0.60
V̇CO2 (L/min) 0.20 (0.19–0.27) 0.27 (0.24–0.33) 0.01* − 0.67
RER 0.84 (0.80–0.88) 0.91 (0.86–0.94) 0.08 − 0.45
EE (kcal/min) 1.28 (1.16–1.49) 1.45 (1.20–1.77) 0.02* − 0.64
PM EE (kcal/min) 5.55 (5.00–6.43) 6.26 (5.20–7.41) 0.02* − 0.64
HRV variables
HR (bpm) 84.5 (74.1–96.1) 87.1 (80.3–104) 0.01* − 0.74
RR (ms) 710 (624–810) 689 (579–747) 0.02* 0.71
RMSSD (ms) 35.9 (25.7–46.9) 34.0 (21.8–44.8) 0.49 0.23
pNN50 (%) 11.2 (3.32–33.9) 12.9 (2.36–23.8) 0.34 0.32
HF (ms2) 368 (230–1022) 603 (254–856) 0.73 0.12
LF/HF (ms2) 3.10 (1.82–4.18) 2.06 (1.55–3.57) 0.45 0.25
Note*= significance (Wilcoxon test- p < .05). VE = ventilation; V Ȯ2= oxygen consumption; V ĊO2= carbon dioxide elimination; RER = respiratory exchange ratio; 
EE = energy expenditure derived from RER and V Ȯ2; PM EE = Peronnet and Massicotte energy expenditure; HR = Heart Rate; RMSSD = root mean square of successive 
differences; pNN50 = Percentage of successive normal sinus RR intervals more than 50ms; HF = High frequency; LF/HF = Low to High frequency ratio
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glucose during these tasks [52–55]. Future research into 
the physiological demands of esports may incorporate 
neuroimaging or blood testing to further investigate the 
effect of esports gameplay on cerebral metabolic rate.

Exercise training within e’athletes may influence sub-
strate metabolism during competitive gameplay. The 
training status of individuals affects substrate metabo-
lism during exercise and contributes to the rate of car-
bohydrate metabolism during activity [56, 57]. Studies 
have shown a greater utilisation of lipids during mod-
erate intensity exercise after endurance training [58], 
which may apply to tasks of increased cognitive load. 
Exercise training also induces positive mental health, 
improved cognitive function, and greater adaptability to 
various stressors [59]. Therefore, it could be hypothesised 
that specific exercise training could indirectly enhance 
esports performance and overall health of e’athletes, 
although further investigation is needed to support this.

There was a significant increase in heart rate and 
decrease in RR-intervals from RMR to GMR with large 
effect sizes. However, no measure of HRV displayed sig-
nificant differences between conditions, which could 
indicate that solo-queued ranked gameplay across game 
titles does not elicit a stress response. Previous findings 
have highlighted that live esports competition generated 
vagal mediated responses, reflected through a significant 
decrease in HF power [60], which could be explained 
by e’athletes reporting stressors within competition are 
more intense than team or solo training [28]. This could 
explain why the results observed in our study are differ-
ent to those obtained during live competitive games, as 
e’athletes experience greater stressors during competitive 
games when compared to playing a solo-queued ranked 
game. E’athletes with more experience have been shown 
to have higher HRV values when compared to casual 
e’athletes in the end-phase of gaming, which indicates 
that expert e’athletes are able to cope with stress bet-
ter in the late game [61]. The participants in the current 
study were expert e’athletes, which may explain why no 
differences were observed for any HRV variables between 
rest and gameplay, as they may not perceive solo-queued 
ranked gameplay as a stressor. Additionally, e’athletes 
within winning teams have demonstrated significantly 
higher pNN50 and RMSSD measurements post-game, 
when compared to losing teams, which has been hypoth-
esised to be due to poor self-regulation or greater recov-
ery [25, 26].

When compared to normative ranges within healthy 
subjects, the resting R-R interval, RMSSD, pNN50 and 
HF measurements within this study are lower [62, 63]. 
Lower HRV values can be indicative of an increased risk 
of cardiovascular disease- related morbidity and mor-
tality [64, 65]. Lower HRV observed within this study 
may also be explained by the physical activity behaviour 

reported by the group, as the majority (69.2%) did not 
meet the WHO physical activity guidelines [38]. Exer-
cise training has been shown to elevate HRV values after 
significant improvements in aerobic fitness, and mitigate 
the age-related decline in HRV [66]. Additionally, there is 
a correlation between lower HF power and stress, panic, 
anxiety, or worry [67]. Control measure questionnaires 
prior to data collection did not identify extreme levels of 
stress, sleepiness, or mood prior to testing, which may 
indicate that the lower levels of HRV could be due to 
poor physical activity behaviours. This finding adds some 
support to implementing physical exercise training and 
promoting physical activity within the esports industry.

This study presents with multiple strengths and limita-
tions. The first strength of this study is that the sample 
size met the prior sample size calculation which pro-
vided sufficient power during data analysis. Meticulous 
methodology and sensitive equipment were then used to 
acquire data and thereby minimise instrumentation and 
researcher errors. This, in turn, improved the power of 
the research study and related statistical analyses (mini-
mised type-2 errors). This study also adds to the litera-
ture as it is one of the first studies to use EGAIC within 
expert e’athletes, which provided further insight into the 
physiological demands of esports changes to whole-body 
metabolism.

Limitations within the study include using solo-queued 
ranked games instead of more important matches, such 
as team scrimmages or live competition, which has been 
identified in the literature as more stressful than solo 
or team training [28]. The EGAIC equipment is a major 
distraction within gameplay and far from the normal 
environment. This means that e’athletes and coaches 
were only comfortable playing solo-queued ranked 
games under testing conditions. Less invasive meth-
odologies will need to be used to gain access to play-
ers under real competition conditions, or to develop 
research methods that effectively provide a real-game 
scenario, perhaps through the provision of meaningful 
prizes or other forms of reward. Another limitation of 
the study is the under representation of females within 
the sample. This is an area for future research as a lack of 
female participation is a consistent problem within the 
industry [68]. The methodology used within this project 
lacks theoretical underpinning, which Welsh et al. [29] 
has identified as a limitation within esports. Recruit-
ing local e’athletes ranked within the top 10% of their 
game to participate within a laboratory-based project is 
challenging. Due to participant recruitment difficulties, 
participants were grouped together as ‘e’athletes’ across 
four different esport titles, which may affect the results. 
Future research needs to investigate the differences 
across game titles, and the potential influence of certain 
in-game roles.
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Conclusion
In conclusion, the findings demonstrated that solo-
queued ranked gameplay significantly increased energy 
expenditure, O2 Consumption, and CO2 production 
when compared to rest. Increases in energy expenditure 
are believed to be due to the increase in cognitive load 
during gameplay as the activity is performed in a seated 
position. The findings also demonstrated that HR was 
significantly increased during gameplay, although all 
markers of HRV showed no significant difference, which 
may indicate that solo-queued gameplay does not elicit a 
significant stress response. Resting values of HRV were 
lower than normative values within healthy subjects, 
which is a major concern as this indicates an increased 
risk of cardiovascular-related morbidity and mortality. 
The results of this study provide further insight into the 
physiological demands of competitive esports gameplay; 
however, further investigation is needed within competi-
tive environments.
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