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Abstract 

Background Recently a proof‑of‑concept was proposed to derive the soccer players’ individual in-situ acceleration‑
speed (AS) profile from global positioning system (GPS) data collected over several sessions and games. The present 
study aimed to propose an automatized method of individual GPS‑derived in-situ AS profiling in a professional rugby 
union setting.

Method AS profiles of forty‑nine male professional rugby union players representing 61.5 million positions, 
from which acceleration was derived from speed during 51 training sessions and 11 official games, were analyzed. 
A density‑based clustering algorithm was applied to identify outlier points. Multiple AS linear relationships were mod‑
eled for each player and session, generating numerous theoretical maximal acceleration (A0), theoretical maximal 
running speed (S0) and AS slope (ASslope, i.e., overall orientation of the AS profile). Each average provides information 
on the most relevant value while the standard deviation denotes the method accuracy. In order to assess the reliabil‑
ity of the AS profile within the data collection period, data were compared over two 2‑week phases by the inter‑class 
correlation coefficient. A0 and S0 between positions and type of sessions (trainings and games) were compared using 
ANOVA and post hoc tests when the significant threshold had been reached.

Results All AS individual profiles show linear trends with high coefficient of determination  (r2 > 0.81). Good reli‑
ability (Inter‑class Correlation Coefficient ranging from 0.92 to 0.72) was observed between AS profiles, when deter‑
mined 2 weeks apart for each player. AS profiles depend on players’ positions, types of training and games. Training 
and games data highlight that highest A0 are obtained during games, while greatest S0 are attained during speed 
sessions.

Conclusions This study provides individual in-situ GPS‑derived AS profiles with automatization capability. The 
method calculates an error of measurement for A0 and S0, of paramount importance in order to improve their daily 
use. The AS profile differences between training, games and playing positions open several perspectives for perfor‑
mance testing, training monitoring, injury prevention and return‑to‑sport sequences in professional rugby union, 
with possible transferability to other sprint‑based sports.

*Correspondence:
Adrien Sedeaud
Adrien.sedeaud@insep.fr
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40798-023-00672-7&domain=pdf
http://orcid.org/0000-0002-0808-7986
http://orcid.org/0000-0002-8492-3579


Page 2 of 11Miguens et al. Sports Medicine - Open            (2024) 10:6 

Key Points 

• AS profiles computed from rugby union GPS data provide positional benchmarks during training and competi‑
tion.

• This study provides automatic detection of atypical data and the computation of error measurement of theoreti‑
cal maximal acceleration and speed components.

• This refinement constitutes a step forward for a daily use of ecological data by considering data collection 
and method reliabilities.

• This easy‑to‑implement approach may facilitate its use to the performance management process (talent identifi‑
cation, training monitoring and individualization, return‑to‑sport).

Keywords Rugby union, Testing, Sprint, Running

Background
In invasion and combat sports such as rugby union, the 
ability to cover a distance in the shortest possible time (or 
the largest distance in a given time) is a key determinant 
(e.g., for breaking the line, avoiding or tackling an oppo-
nent, scoring a try), independently of the player level or 
position [1–5]. Examining such acceleration capabilities 
through velocity–time measurements and force–velocity 
profiling [6–8] is of paramount importance to individual-
ize players’ training process [6, 9, 10]. However, although 
being simple, valid and reliable [6, 11], actual force–
velocity profiling has several technical constraints: it is a 
time-consuming testing method using dual-beamed pho-
tocells, radar devices, instrumented treadmill or track-
embedded multiple force plate systems, that may all limit 
their daily use [12].

The advent of player tracking technologies such as 
global positioning system (GPS) and local positioning 
systems (LPS) allows for the relatively unobtrusive, objec-
tive and simultaneous monitoring of players’ locomo-
tion during training and games [12–15]. Advancements 
in sensor technology have facilitated a transition from 
descriptive examinations of movement patterns to the 
comparative analysis of activity profiles and the establish-
ment of competition standards [16]. This progression has 
also unlocked the potential for leveraging acceleration, 
deceleration, and high-speed data [17]. Consequently, 
a wide variety of metrics to assess acceleration and the 
ability to change velocity in training and competition 
have emerged [17, 18]. Morin et  al. [19] recently pro-
posed to measure individual in-situ acceleration-speed 
(AS) profile of soccer players computed from GPS train-
ing values. Conceptually, this easy-to-implement con-
cept is resembling the force–velocity profile derived 
from single straight sprinting test [6, 7] with the maximal 
theoretical acceleration (A0) and force (F0) expressing 
the maximal acceleration/force capability in the antero-
posterior direction and the maximal theoretical running 
speed (S0) being the mechanical equivalent of maximal 

theoretical velocity (V0) [19]. Although promising, such 
non-intrusive AS profiling may be applied to other team-
sport datasets that may include competitive sessions in 
order to provide sport-specific standards [20]. Recently 
Clavel et  al. [21] demonstrated a nearly perfect correla-
tion between radar and GPS-derived force–velocity vari-
ables. This study indicated that the GPS device is a valid, 
reliable, and time-effective alternative to radar for force–
velocity assessment. Furthermore, a recent study in 
elite female soccer players demonstrated that AS in-situ 
profiles derived from both training sessions and games 
align closely with isolated AS sprint profiles [22]. How-
ever, questions have arisen regarding the methodologies 
employed in profile creation specifically in terms of the 
analysis methods such as data cleaning, outlier removal, 
and signal processing [22]. Other major improvement 
would be to provide an error of measurement on A0 and 
S0 variables for each training type (e.g., speed vs. scrim-
mage) and game, a major component to improve any 
decision-making process [23]. Furthermore, the increas-
ing volume of data now calls for an automatized develop-
ment of algorithms for fast and accurate data processing, 
possibly through open-source repositories.

It may also be important to define profiles according 
to playing position and individual idiosyncrasies [7]. In 
rugby union, due to variability in anthropometrics and 
body composition among players [24, 25] coupled with 
position-specific game demands [3, 26], substantial inter-
player variations have been identified in acceleration and 
speed capacities. Notably, forward players exhibit a force-
dominant profile, in contrast to the velocity-dominant 
profiles observed among backs [27]. Thus, a better under-
standing of the individual position-specific AS analysis 
should have practical implications to design personalized 
targeted training intervention (e.g., replicating or exceed-
ing position-specific match-play demands, acceleration/
force or speed/velocity-oriented drills) accommodating 
for each player strengths or weaknesses [10].
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The purpose of this study was to propose an 
automatized method to determine individual in-situ 
GPS-derived AS profiles and generate an error of meas-
urement on A0 and S0 components in reference to train-
ing types, games and positions in professional male rugby 
union players.

Methods
Ethics Statement
This study was approved by the Institut de Recherche 
bio-Médicale et d’Epidémiologie du Sport scientific com-
mittee and registered within the Commission Nationale 
de l’Informatique et des Libertés (CNIL) with the follow-
ing registration number: 2224815. Data collection was 
compliant with the General Data Protection Regulations 
applied in the European Union and conform to the gen-
eral ethical principles of the Declaration of Helsinki.

Data Sample
Forty-nine male rugby union players (mean ± SD; age: 
27.2 ± 5.9 yr, height: 184.2 ± 8.0 cm, body mass: 99.6 ± 17.1 
kg) belonging to a French second division (ProD2) squad 
(ten first rows, seven second rows, ten third rows, three 
half scrums, two half backs, three centers, seven wings, 
three backs) were enroled. Over a 5-months period (i.e., 
from Febrary 5th to June 7th 2021), they carried a global 
positioning system (GPS) sensor (Catapult Vector X7, 
Firmware: 8.1.0, Melbourne, Australia) sampled at 10 
Hz during training sessions and games. According to the 
manufacturer guidelines and methodological considera-
tions on minimum effort duration to quantify high-inten-
sity efforts using GPS [28], acceleration and speed were 
identified only when effort duration exceeded a threshold 
of 0.4 s. Horizontal dilution of precision over the period 
averaged 0.76 ± 0.06. The mean number of connected sat-
ellites was 15.48 ± 0.95. The feature for exporting raw data 
in CSV format within Openfield was used. Acceleration 
data were derived from speed data with a time interval 
(referred in the software as Smoothing Filter Width) of 
0.2 s. Of the forty-nine players, two first rows and two 
centers were excluded from the study, due to long-term 
absence. Raw GPS data from 51 trainings (i.e., 3–4 ses-
sions per week including speed session, specific forwards 
or backs trainings, scrimmage session or lineout session), 
11 official games (i.e., one per week), and other sessions 
representing a dataset of 61.5 million positions, speed 
and accelerations, were analyzed.

Outlier Points’ Identification
Before considering the relationship between maximal 
acceleration and maximal speed [19], outlier points (i.e., 
artefacts or measurement errors) from GPS data were 

identified according to the distribution of theoretical 
maximal velocity (μV, σV) and theoretical maximal force 
(μF, σF), considered as norms in rugby union [27]. By 
applying the 3σ-rule [29], an acceleration greater than 
μF + 3σF or a velocity greater than μV + 3σV were consid-
ered unlikely. The force–velocity relationship being close 
to a linear relation, any value above the line formed by 
the y-intercept of μF + 3σF and the x-intercept of μV + 3σV 
were also considered unlikely and therefore discarded. 
These values were counted for each session. Above 15 
unlikely values (corresponding to 1.5 s of consecutive 
improbable values), all player’s data was dropped out 
for that session (Fig.  1; black points). Except for meas-
urement errors inherent to the GPS (n = 14; deleted 
from the dataset), only a single case with two defective 
days, and 8 cases with one defective day were identi-
fied. This is particularly important as a Gaussian filter 
was used afterwards [19] (in that case, a single outlier 
can affect all its neighboring values). By applying the 
density-based clustering algorithm (DBSCAN) [30], val-
ues without neighbors in the AS area were identified as 
outliers (Fig. 1; red dots). This method allows to identify 
the values far enough from each other’s. Physically, two 
consecutive values in time from a trajectory are close in 
space. Thus, a value without neighbor in the AS space 
could be considered as an outlier. Briefly, DBSCAN algo-
rithm needs (i) the number of values in a neighborhood 
to consider a dot as a core value, and (ii) the size of the 
neighborhood which corresponds to the maximum dis-
tance between two values quantified as the Euclidean dis-
tance [ Dist(Pt ,Pt+�t) ] between two consecutive values 
Pt [defined by acceleration as a(t) and speed as s(t) ] and 
Pt+�t with �t the associated time difference. This �t cor-
responds to the sensor sampling frequency (10 Hz).

Therefore, by definition of the Euclidean distance:

With �s (resp. �a ) the speed difference between two 
consecutive speeds (resp. accelerations):

The classic approach used by Morin et al. [11] to quan-
tify a sprint is to define s(t) as exponential over time:

With Smax the maximal speed (in m  s−1) reached at the 
end of the acceleration and τ the acceleration time con-
stant (in s).

By deriving (3) over time:

(1)Dist(Pt ,Pt+�t) =
√
�a2 +�s2

(2)
�s = s(t +�t)− s(t)

�a = a(t +�t)− a(t)

(3)s(t) = Smax 1− e−
t
τ
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From (2) and (4):

By factoring from (1) and (5):

From (2) and (3):

From (3) and (7):

rom (6) and (8):

Finally:

(4)
a(t)

ds

dt

a(t) =
1

τ
s(t)+

1

τ

(5)�a = 1
τ
�s

(6)Dist(Pt ,Pt+�t) = |�s|
√

1+ 1

τ 2

(7)�s = Smaxe
− t

τ

(

1− e−
�t
τ

)

(8)�s = (Smax − s(t))
(

1− e−
�t
τ

)

(9)
Dist(Pt ,Pt+�t) = |Smax − s(t)|

∣

∣

∣
1− e−

�t
τ

∣

∣

∣

√

1+ 1

τ 2

With τ = 1.19 s , Smax = 9.89 m s−1 from Morin et  al. 
[11] and �t = 10 Hz = 0.1 s−1:

Thus, the parameters for the DBSCAN algorithm are 
1.13 for the maximum distance between two samples and 
3 for the number of samples in a neighborhood (i.e., Pt , 
its previous one, Pt−�t , and its next one, Pt+�t).

Data Processing
After removal of outliers, the AS linear relationship was 
modeled for each player. Then, the maximal accelera-
tion was detected (Fig. 2; green dots). From this maximal 
acceleration to the individual maximal speed reached, 
two values at maximum acceleration for every 0.2 m.s−1 
sub-interval were selected (Fig.  2; red dots) to generate 
a linear AS profile. In some cases, an unequal variance 
in A0 (Fig. 2, left panel) or in S0 (Fig. 2, right panel) was 
observed, resulting in higher uncertainty on A0 and S0 
values.

Considering the Mean Square Error (MSE) as the 
cost function to be minimized, the furthest values from 
the linear regression have a very strong weight in the 

(10)Dist(Pt ,Pt+�t) ≤ |Smax|
∣

∣

∣
1− e−

�t
τ

∣

∣

∣

√

1+
1

τ 2

Dist(Pt ,Pt+�t) ≤ 1.13

Fig. 1 Example of outliers’ identification in two individual GPS‑induced AS relationships (computed from all training sessions and official games; 
one row for each player). From left to right: before, during and after outliers’ identification. The red dots are measurement errors corrected 
with density‑based clustering algorithm (DBSCAN) whereas the black dots represent values corrected by 3σ‑rule
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regression calculation. Meanwhile, the values located far 
below the linear regression are not necessarily the most 
relevant. Changing the cost function by Lγ , as defined in 
(11), yields a quantile regression with several advantages.

With y observed values, yp predicted values and 
γ ∈ ]0, 1[.

The first advantage is the change of (yi − y
p
i ) 

2 in the 
MSE quadratic term with 

∣

∣yi − y
p
i

∣

∣ . This change places 
less weight to values far from the predicted linear regres-
sion. The second advantage is the contribution of the γ 
term. When γ < 0.5, a higher weight to the values under 
the obtained linear regression is given. If γ > 0.5, the lin-
ear regression is boosted by a higher weight. By varying 
γ between 0.05 and 0.95, more or less weight is given to 
the values. The variation of γ produced different straight 
linear regressions and thus an interval of possible values 
for A0, S0 and for the slope, i.e., overall orientation of the 
AS profile (computed as ASslope =—A0 / S0) (Fig. 2; linear 
regressions). Thus, for each player and sessions, different 

(11)

Lγ
(

y, yp
)

=
∑

yi<yp,i

(1− γ )
∣

∣yi − yp,i
∣

∣+
∑

yi≥yp,i

(γ )
∣

∣yi − yp,i
∣

∣

A0, S0 and ASslope values are obtained. Their averaged val-
ues provide information on the most relevant A0 and S0 
values while the standard deviation of this multiple linear 
regressions indicates the accuracy of the method. This 
new method estimating the AS profile provides an error 
of measurement around A0, S0 and ASslope. The source 
code is available on a GitHub page: https:// github. com/ 
NthnM gns/ accel erati on- speed- profi ling.

Statistical Analysis
In order to assess the reliability of the AS profile within 
the collection period, data were compared over two 
2-weeks phases as described elsewhere [19]. Briefly, the 
inter-phase reliability for A0, S0 and ASslope was quanti-
fied through the change in the mean (systematic error), 
the standard error of measurement (SEM, random error), 
both expressed in raw units and in percentage of mean 
values, and the inter-class correlation coefficient (ICC) 
between two 2-weeks phases datasets. A and S were com-
pared between positions and session types using ANOVA 
and Tukey post hoc tests when the significant threshold 
had been reached. The level of significance was set at 
p = 0.05.

Fig. 2 Example of quantile regressions for selected dots, left and right panels represent a high variance in AO and in SO, respectively

Table 1 Main variables of the individual acceleration‑speed (AS) profile for the two training phases analyzed

A0: maximal theoretical acceleration; S0: maximal theoretical speed; ASslope: slope of the AS profile; SEM: standard error of measurement; ICC inter-class correlation 
coefficient

Variable Phase 1 Phase 2 Raw difference (Phase 
2–Phase 1)

Raw difference (% 
from Phase 1)

SEM (raw units) SEM (%) ICC

S0 (m  s−1) 8.29 ± 0.91 8.34 ± 0.83 0.36 ± 0.30 4.38 0.35 4.18 0.92

A0 (m  s−2) 7.25 ± 0.56 7.30 ± 0.60 0.43 ± 0.34 5.87 0.37 5.13 0.72

ASslope  (s
−1) − 0.88 ± 0.12 − 0.88 ± 0.09 0.08 ± 0.06 − 8.51 0.08 8.59 0.73

https://github.com/NthnMgns/acceleration-speed-profiling
https://github.com/NthnMgns/acceleration-speed-profiling
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Results
All AS individual profiles showed linear relationships 
with high coefficient of determination (all  r2 > 0.81).

Inter‑Phase Reliability
Percentages of standard error measurement (SEM) 
fluctuate between 4.2 and 8.6%, with an S0, A0 and ASs-

lope Inter-class Correlation Coefficient (ICC) between 
the two phases of 0.92, 0.72 and 0.73, respectively 
(Table 1).

AS Profile Among Positions
A0, S0 and ASslope according to positions are presented in 
Table 2. Centre players showed significant superior mean 
values of 8.40 ± 0.06  m.s−2 and 9.71 ± 0.60  m.s−1 for A0 
and S0, respectively, than their second row counterparts 
(7.65 ± 0.48  m.s−2 and 7.82 ± 0.53  m.s−1 for A0 and S0, 
respectively) (Table 2).

Computed mean and error measurements (with its 
x and y error measurement expressed by the size of the 
area) for A0 and S0 are displayed in Fig. 3 for each player 
and position. Three different AS profiles are presented 
independently of position: (i) a high mean A0 with a large 

Table 2 mean and error of measurement of theoretical maximal acceleration (y‑intercept of the AS linear relationship; A0), theoretical 
maximal running speed (x‑intercept of the AS relationship; S0) and slope of the AS profile (slope of the AS relationship; ASslope) by 
positions

A0 (m.s−2) S0 (m.s−1) ASslope  (s−1) Significant 
differences of 
A0 vs

Significant differences of S0 vs

First row (n = 10) 7.86 ± 0.41 7.68 ± 0.62 − 0.98 ± 0.17 Third row, Half scrum, Half back, Centre, Wing and Back

Second row (n = 7) 7.65 ± 0.48 7.82 ± 0.53 − 0.98 ± 0.11 Centre Third row, Half scrum, Half back, Centre, Wing and Back

Third row (n = 10) 8.08 ± 0.90 8.94 ± 0.50 − 0.91 ± 0.12 First row, Second row and Centre

Half scrum (n = 3) 8.28 ± 0.06 9.18 ± 0.06 − 0.90 ± 0.01 First row and Second row

Half back (n = 2) 7.58 ± 1.18 9.28 ± 0.33 − 0.82 ± 0.16 First row and Second row

Centre (n = 3) 8.40 ± 0.06 9.71 ± 0.60 − 0.87 ± 0.08 Second row First row, Second row and Third row

Wing (n = 7) 8.00 ± 0.58 9.30 ± 0.37 − 0.86 ± 0.06 First row and Second row

Back (n = 3) 8.44 ± 0.76 9.42 ± 0.14 − 0.90 ± 0.08 First row and Second row

Fig. 3 Mean and error measurement (provided by the quantile regression method) of theoretical maximal acceleration (y‑intercept of the AS linear 
relationship; A0) and theoretical maximal running speed (x‑intercept of the AS relationship; S0) for each rugby union player. Positions are represented 
by color
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error measurement (10.26 ± 1.39  m.s−2) with an aver-
aged S0 with a low error measurement (8.51 ± 0.05 m.s−1) 
(Fig. 3; Player n°1), (ii) large error measurement on both 
A0 (8.66 ± 0.83 m.s−2) and S0 (9.34 ± 0.47 m.s−1) (Fig.  3; 
Player n°2), and (iii) low error measurement on both A0 
(7.53 ± 0.23 m.s−2) and S0 (7.78 ± 0.1 m  s−1) (Fig. 3; Player 
n°3).

AS Profile Among Different Trainings and Games
Computed mean and error measurements for A0, S0 
and ASslope for each rugby training session and game 
are detailed in Table  3. Mean A0 calculated from offi-
cial games was significantly higher than from all oth-
ers trainings (Table 3). Mean S0 calculated from speed 
sessions was significantly higher than from all others 
trainings and games (Table  3). Computed mean and 
error measurements for each player for A0 and S0 are 
displayed in Fig.  4 on training or game sessions (with 
the x and y magnitude of error measurement expressed 
by the size of the area). Mean and error measurements 
ranged from 6.08 ± 0.75 m.s−2 (specific forward or back 
trainings) to 7.71 ± 1.05 m.s−2 (official game) for A0 
and from 6.79 ± 1.13 m.s−1 (Specific forward or back 
trainings) to 9.28 ± 0.88 m.s−1 (speed sessions) for S0 
(Table 3). Large differences on error measurement were 
observed between the type of session (Fig.  4). Scrim-
mage sessions and speed sessions appeared with the 
lowest SEM on S0 (0. 77 and 0.88 m.s−1, respectively; 
Table 3); yet inversely, other sessions (lineout and other 
sessions) presented the highest error measurement  on 
S0 (1.63 and 1.30 m.s−1, respectively; Table 3 and Fig. 3).

Discussion
This study aimed to automatize the individual GPS-
derived in-situ AS profiling capable of generating an error 
of measurement on A0 and S0 components in reference to 
training type, games and positions in male rugby union 
players. According to soccer-related studies [19, 21], this 

study confirms that individual in-situ AS profiles can be 
computed from rugby union GPS data and provide posi-
tional benchmarks for both training and competitive sce-
narios. Furthermore, two major improvements including 
the automatic detection of atypical data during process-
ing and the computation of an error measurement on 
the A0 and S0 components for each training sessions and 
games may enable the daily integration of AS profiles in 
players’ monitoring.

An automatized and Refined Method
All AS individual profiles show linear relationships with 
high  r2, similarly (albeit slightly lower) to those measured 
in previous studies [19, 20]. This difference is possibly 
due to the fact that, in the present study, several linear 
regressions were carried out without shrinkage (instead 
of a single one with removal of the points too far from the 
linear regression) to calculate an error of measurement.

The very good reliability for AS profiles determined two 
weeks apart (all standard error of measurements < 8.6%, 
Table  1) is in accordance with in-situ AS profile in soc-
cer [19, 20], and in line with standardized force–velocity 
sprint testing [6, 31]. Nevertheless, the residual vari-
ance may be contingent upon factors such as the quality 
of the sampled GPS signal, environmental and tactical 
conditions during both trainings and matches, training 
specificity (e.g., speed session vs. specific forwards train-
ing), and inherent hardware and software characteristics 
among other considerations.

AS profiles can change over a professional rugby union 
season [32] and are therefore likely to influence the 
inter-phase systematic differences observed in the pre-
sent dataset. For example, in elite youth soccer players, 
the number and content of sessions affect S0 [20]. High-
speed exposure seems to be essential to build a reli-
able in-situ AS profile [20]. Here, the proposed method 
makes it possible to independently identify the number 

Table 3 Mean and error measurement of theoretical maximal acceleration (y‑intercept of the AS linear relationship; A0) and theoretical 
maximal running speed (x‑intercept of the AS relationship; S0) by type of rugby sessions

*Significantly different vs. Official games, # significantly different vs. Speed sessions, $ significantly different vs. scrimmage sessions, † significantly different vs. Specific 
forward or back trainings, £ significantly different vs. Lineout, ¥ significantly different vs. Others

A0 (m  s−2) S0 (m.s−1) ASslope  (s−1) Significant differences 
of A0 vs

Significant 
differences of 
S0 vs

Official games 7.71 ± 1.05 8.39 ± 0.99 − 0.93 ± 0.07 #, $, †, £, ¥ †, £, ¥

Speed sessions 6.22 ± 1.04 9.28 ± 0.88 − 0.68 ± 0.07 * $, †, £, ¥

Scrimmage sessions 6.90 ± 0.86 8.22 ± 0.77 − 0.84 ± 0.05 *, †, £ #, †, £, ¥

Specific forward or back trainings 6.08 ± 0.75 6.79 ± 1.13 − 0.93 ± 0.10 *, #, ¥ *, #, $, ¥

Lineout 6.32 ± 0.74 7.25 ± 1.63 − 0.92 ± 0.09 *, $ *, #, $

Others 6.66 ± 0.89 7.55 ± 1.30 − 0.91 ± 0.09 *, † *, #, $, †
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of points or the degree of high-speed exposure the level 
of uncertainty on the A0 and  S0 components. This refine-
ment constitutes a step forward for a daily use of eco-
logical data by considering data collection and method 
reliabilities.

AS Profiles Sensibility to Positions, Training Typologies 
and Games
The increasing use of field testing questions the in-situ 
AS measurement reliability [33]. One approach to assess 
the reliability of a new measure is to compare it to the 
gold standard and/or evaluate its capability to differenti-
ate players by position or level. The automatized method 

Fig. 4 Mean and error measurement (provided by the quantile regression method) of theoretical maximal acceleration (y‑intercept of the AS linear 
relationship; A0) and theoretical maximal running speed (x‑intercept of the AS relationship; S0) for each rugby player. Types of training and game 
are represented by different color
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developed here is able to detect different range of A0 and 
S0, reflecting the major inter-player differences in AS 
capacities, even in a highly-trained population, in accord-
ance with previous method [19, 20]. Indeed, we find 
similar position-specific A0 and V0 values in reference to 
single straight sprinting test (i.e., 30-m performance with 
radar and dual-beam infrared timing gates), which have 
been carried out on rugby union players [27]. Recently, 
Glaise et al. [34] reports similar components of the sprint 
force–velocity profile according to positional group (for-
wards vs. backs). These parameters of AS profile also 
depend on the players’ position. Indeed, backs produce 
higher S0 than forwards in accordance with the game 
demands and inherent capabilities. These players are 
faster over several distance ranging from 20 to 100 m [2], 
involved in more sprints and in larger sprinting distance, 
and completed more high-speed running compared to 
the forwards [35]. Interestingly, this automatized method 
was also tested to identify differences of A0 and S0 com-
ponents by type of session. Highest A0 are obtained dur-
ing games, while greatest S0 are attained during games 
and speed sessions. These values are in line with the 
competitive demands of a match, where players typically 
sprint within the range of 10–20  m [36]. The elevated 
S0 observed during speed session could also result from 
the greater distance available for sprinting. The achieve-
ment of S0 or Vmax, prerequisite to reliably build the AS 
profile, suggest that rugby players should be tested over 
distances greater than 40 m [36]. This circumstance may 
be more frequently encountered during training sessions 
compared to actual game situations. One possible expla-
nation lies in the stochastic and intermittent nature of 
rugby union that require a great number of accelerations 
regardless of position during dueling, tackling, rucking, 
acting as a support player, or running decoy lines to dis-
tract the opposition, or covering in defense. The fact that 
the highest S0 (9.28 ± 0.88 m.s−1) are measured during the 
speed sessions can be explained by the need to achieve 
higher percentages of maximum speed (i.e., ≥ 95%) [20]. 
The present study is the first to consider AS profiling 
in reference to training and games. Waiting for further 
studies to deepen our understanding of training- and 
game-induced responses on AS components, the present 
findings are in line with the proof-of-concept developed 
in professional soccer players [19, 20] and open an era for 
regular monitoring of AS profiles and individualization of 
training programs, that may be easy to implement (with-
out specific testing apparatus required, but only GPS data 
that may be passively collected in-situ).

Competitive Reserve
This study reveals that the highest A0 are obtained dur-
ing games, while greatest S0 are attained during games 
and speed sessions. This is why it is essential to measure 
these competitive parameters which represent the refer-
ence under maximal competitive constraints. The com-
parison obtained during other types of training or game 
can provide an understanding of the physiological strain 
of each session and express a "competitive reserve". This 
"competitive reserve" illustrates what we can hope to 
see put into play in the next game or what certain play-
ers who know how to manage themselves can dig deep 
within themselves to implement it at the appropriate 
time (money time, in the opposing 22 m, or during key 
moment of the game). This "competitive reserve" can 
also illustrate the load margin to reach A0 or S0 during 
trainings. This can be considered as the benchmark value 
for individual standardization. The 100% represents the 
individual competitive demand, and each exercise is a 
distance to this maximum. Each quantifiable parameter 
of training can thus be assessed in relation to the most 
demanding competitive scenarios. A characterization 
of each sessions performed based on the distance from 
the competitive demands can thus be provided. There-
fore, it becomes feasible to position the player between 
two competitions in terms of his capacity to recover 
maximum efficiency or his kinetics to return to peak 
performance.

Practical Application
To the best of our knowledge, this study is the first to 
provide an automatized detection of AS time series aty-
picity, able to generate individual in-situ AS profiles in 
professional rugby union. This method facilitates data 
processing and identification of outliers, allowing for 
the provision of error measurements on the A0 and S0 
parameters. Compared to the single straight sprinting 
test-based force–velocity profiling, generating in-situ AS 
profiles allows to contextualize performance data (e.g., 
measuring acceleration and speed in ecological settings), 
representative of rugby union specificities or constraints 
[37]. Of relevance, the method developed in the present 
study provides an error measurement for both A0 and S0 
components that may allow to monitor the inter-day var-
iation in each individual AS profile for rugby union play-
ers’ follow-up [38], and data-driven training decisions 
[39, 40]. In our view, collecting continuous data over time 
would permit to understand changes in individual AS 
profile in reference to a specific training or strength and 
conditioning intervention (e.g., force- or acceleration- vs. 
speed-based training or generic [running-based high-
intensity intermittent training] vs. sport-specific [small-
sided games] training) or over time (e.g., dose–response 



Page 10 of 11Miguens et al. Sports Medicine - Open            (2024) 10:6 

relationship) or over different period of the season (e.g., 
regular season vs. play-off). Also, according to indi-
vidual AS profile, specific personalized work to improve 
acceleration and sprint capacities can be proposed with 
daily monitoring to control the training quality or fati-
gability status, thereby allowing to avoid overstress and 
injury. Third, “top-up” sessions could be implemented if 
the desired A0 and V0 are not achieved during targeted 
training sessions. Such daily information could be con-
sidered as a predictor of a readiness score, which may 
have usefulness in the understanding of kinetics of return 
to individual A0 and S0 post-game, between games or to 
follow-up the recovery of injuries or their prevention [19] 
(return-to-sport or return-to-performance processes). 
Overall, this method may be extremely convenient for 
an on-field use by sport practitioners due to its time-sav-
ing advantage and supplemental information (i.e., error 
measurements) on the reliability of the AS profile. This 
makes such an automatized profiling key to the perfor-
mance management process (talent identification, train-
ing monitoring and individualization, return-to-sport).

Limitations and Perspectives
The determination of individual in-situ AS profiles is pri-
marily dependent on data quality [19]. In this study, accel-
eration was computed by deriving speed from GPS raw 
data, and not from the accelerometer embedded in the 
GPS sensor. The reason was to avoid any shock, impact, 
tackle, changes of direction, and all other sudden forces 
susceptible to alter the vectorial acceleration (Newton’s 
2nd law) which depends on the variation of speed rather 
than forces, for a given time. Future development would 
permit to directly use data from accelerometer instead of 
extrapolating acceleration from GPS-based data. In this 
view, providing more weight for the greatest acceleration 
at a given speed (i.e., the moment when the athlete pro-
vides a maximum effort) would be relevant to modify the 
γ value.

Conclusion
This study provides an automatized method to generate 
individual in-situ acceleration-speed profiles derived 
from GPS data in professional rugby union players. It 
has helpful refinements such as an automatic detection 
of atypical data and the computation of error measure-
ment of theoretical maximal acceleration and speed 
components for each position, training session and 
game. Available through open-source repositories, such 
an easy-to-implement approach may facilitate its use 
for testing, training monitoring, talent identification, 
injury prevention or return-to-sport.
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