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Abstract

Complex systems are open systems consisting of many components that can interact among themselves and the
environment. New forms of behaviours and patterns often emerge as a result. There is a growing recognition that
most sporting environments are complex adaptive systems. This acknowledgement extends to sports injury and is
reflected in the individual responses of athletes to both injury and rehabilitation protocols. Consequently, practition-
ers involved in return to sport decision making (RTS) are encouraged to view return to sport decisions through the
complex systems lens to improve decision-making in rehabilitation. It is important to clarify the characteristics of this
theoretical framework and provide concrete examples to which practitioners can easily relate. This review builds on
previous literature by providing an overview of the hallmark features of complex systems and their relevance to RTS
research and daily practice. An example of how characteristics of complex systems are exhibited is provided through
a case of anterior cruciate ligament injury rehabilitation. Alternative forms of scientific inquiry, such as the use of com-
putational and simulation-based techniques, are also discussed—to move the complex systems approach from the
theoretical to the practical level.
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Key Points Challenges in Return to Sport Decision Making
Return-to-sport (RTS) can challenge health professionals,
+ Complex systems have distinct properties, such as  coaches (i.e., practitioners) and athletes. In competitive
nonlinearity, emergence and adaptation. Sixteen  sports, where marginal gains in performance are sought,
features of complex systems have been identified in  athletes and practitioners often weigh risks and benefits
sports injury rehabilitation. when making the RTS decisions. In a team sports setting,

+ Rehabilitation practitioners may connect complex full availability of players allows greater flexibility in tac-

systems theory with their operations in the sports tical planning, such as deciding the best team formation

setting. based on the opponent’s playing style. Player availabil-
ity is linked to performance [1-3] and could reduce the
financial burden on the team [4, 5].

Research on RTS decision making largely focuses on
identifying a criteria list based on biological factors and
on whether the athlete has returned to baseline per-
formance level (e.g., Grindem et al. [6], Stares et al. [7],
and Kyritsis et al. [8]). This approach has assisted prac-
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Fig. 1 A multilevel system map with factors related to return to sport decision in anterior cruciate ligament injury
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underlying complexity and the high degree of interlinks,
independencies, and temporal components also need
consideration. For example, the same criteria may not
apply to athletes of a different mental state, age group or
playing level. Furthermore, non-linearity is commonly
seen in the context of sports. As an example, most foot-
ball fans would know that a team composed of the best-
skilled players, does not necessarily produce the best
performance. Instead, the outcome is highly dependent
on the interplay of tactical, physiological, social and even
emotional factors. Similarly, it may be beneficial to view
RTS more than simply addressing a set of predefined RTS
criteria, or achieving an arbitrary numerical change in a
performance test.

To address these limitations and objectives, we propose
an approach using the complex systems theory. Recent
work from Bittencourt et al. [9] has raised awareness of
the theory and more could be done to clarify the charac-
teristics of complex systems and to increase the practical
utility of the complex systems approach. Consequently,
this paper builds on the work of Bittencourt et al. [9] and
aims to (1) clarify the terminologies in the complex sys-
tems approach and adapt them for sports, (2) provide
examples relevant to rehabilitation and (3) introduce
tools that can model the complexity and increase practi-
cal utility in applied settings.

What is a Complex Systems Approach?

A Complex Systems Approach to Decision Making in Sports
Medicine

The complex systems theory, with more than 50 years
of history [10], acknowledges the multifaceted nature of
sports and seeks to understand the interactions among
different factors and the outcomes of the systems [9, 11].
Complex systems are dynamic, open systems [12]. They
are characterised by non-linearity due to feedback loops
and interaction among the factors. This means that out-
puts are not always proportional to the inputs, and a
small adjustment may lead to a large change in the sys-
tems and vice versa [13].

In complex systems, factors that interact with each
other to form the systems are known as units [12]. In
the context of RTS, these units could include age, well-
ness, biological healing of injured tissue, stress, external
pressure and injury history. The units interact and define
the space and dimension of the systems [14]. Conse-
quently, different systems within systems emerge. These
systems may be categorised based on their nature, for
example, biomechanical, physiological and psychologi-
cal. They may also be hierarchical and of multiple levels,
namely individual, organisational and environmental (see
Fig. 1). The individual level represents factors related to
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the individual athlete, from tissue healing to personal
traits. The organisational level represents external factors
related to the sporting club, organisation and support
team, e.g., the coaching and medical team. The environ-
mental level covers factors beyond the organisational
level, such as the weather, playing schedule and competi-
tion level.

In recent years, the complex systems approach has
gained momentum and has been used to understand
sports injury occurrence [9, 15] and behaviour in sports
performance [16—19]. However, the terminologies used
in complex systems are often less familiar to practitioners
and could be easily confused with merely complicated or
multifactorial. Most studies recognize the importance of
considering multiple factors in determining readiness for
RTS or in the context of injury recognition [6, 8, 9, 20—
26], but more work is required to raise awareness on why
the lens of complex systems approach should be adopted
by practitioners in rehabilitation.

Applying a Complex Systems Model for ACL rehabilitation
This paper provides examples based on the 16 common
features of complex systems recently illustrated by Boeh-
nert et al. [27]. They are adapted for the context of sports
in Table 1, with examples illustrated mainly from an ante-
rior cruciate ligament (ACL) injury.

An ACL injury is used here as the case illustration as
it is a serious injury that may threaten the career of an
athlete [28, 29]. The estimated annual medical cost asso-
ciated with ACL reconstruction surgery in Australia was
over A$75 million per year [30]. Currently, there is no
consensus regarding the optimal functional rehabilitation
criteria [20] and objective physiological RTS criteria [31].
Despite ACL injuries being one of the most researched
topics in the sports medicine literature [32], the re-injury
risk of ACL remains high [33, 34]. The complexity within
ACL RTS may be explained at the individual, organisa-
tional and environmental levels.

Implications for Practice and Future Research

By illustrating the features of complex systems with a
common sports injury, we highlight their practical util-
ity in RTS. The complex systems approach provides a
theoretical framework for interpreting the patterns that
emerge from biopsychosocial and other external fac-
tors. In ACL rehabilitation, conducting independent
clinical tests and functional assessments may provide
useful information regarding the athletes’ physical and
mental status. However, a complex systems approach
facilitates a more complete picture of the problem and
an increased awareness of how different factors may
interact.
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There are two challenges on using the complex systems
approach: (1) the high degree of complexity may deter
practitioners who do not have formal training in handling
large and complex datasets from using this approach, (2)
Unlike studying in a controlled laboratory environment,
it is near impossible to isolate a portion of the larger
systems (i.e., isolation of the biological healing process
from broader biopsychosocial factors). Fortunately, many
computer-based decision support systems now have the
capability of incorporating features of complex systems
in their design and utility. For example, to operationalise
one of the above features, “change over time’, the working
model can allow flexibility in updating the baseline and
encourage repeated testing at multiple time points during
the rehabilitation. We believe practitioners who develop
an understanding of complex systems will be well-posi-
tioned to efficiently articulate their needs with analysts
and ultimately develop decision support systems that
inform best practices (e.g., RTS decision making).

Computer simulation (e.g., agent-based modelling),
machine learning and Bayesian network (BN) analyses
are all potential tools for analysing both non-complex or
complex systems [35]. These methods can consider the
dynamic interaction at multiple levels simultaneously,
consequently viewing RTS more completely and sup-
porting decision making. These analytical tools may help
to achieve the following: (1) allow practitioners to study
and compare the potential outcome (e.g., likelihood of
reinjury) of different decisions that are otherwise almost
impossible to test safely in real life, (2) increase the deci-
sion efficiency by learning from previous experience and
streamlining data from multiple sources and formats,
(3) identify patterns in data that may cause a certain
outcome.

These techniques can be used to construct clinical
decision support systems, which may complement or
be superior to human decisions. In a review of seventy
studies, a decision support system improved clinical
practice in 68% of trials [36]. These decision support sys-
tems have also provided more accurate diagnoses than
human experts in some medical fields [37, 38]. Yet, the
application of these approaches in RTS is still scarce in
the literature. As such, we have provided a vignette here
to outline how machine learning techniques and Bayes-
ian networks could be applied to support RTS decision
making: a 30-year-old professional female football player
tore her hamstring 10 days ago during the season and
a grade II hamstring strain was diagnosed. There is an
important match in 2 weeks and there are six relevant
questions, as covered in the below sections, which the
practitioners and the coach would like to ask. Ultimately,
the coach would like to know as early as possible about
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the availability of the player so that they could plan the
players’ list and hence the game strategy.

Machine Learning Techniques

As a subfield of artificial intelligence (AI), machine learn-
ing focuses on the use of data to train algorithms that
can make classifications or predictions [39, 40]. That is,
it could recognise new meaningful correlations, patterns
and trends in a large amount of data [41]. Not only are
machine learning techniques suitable for non-complex
analysis, but they can also accommodate multi-dimen-
sional analysis in sport [42, 43]. New data could also be
input into the model for it to learn and improve the task,
leading to refinement of skills [40].

The goals of machine learning techniques in sports
medicine setting can be divided into predictive and
descriptive modelling [44]. Specifically, predictive model-
ling can be used for injury prognosis, diagnosis, and reha-
bilitation planning. Descriptive modelling can be used to
characterize the general property of an injury, such as its
severity, as well as include hypotheses of causality. How-
ever, as with traditional statistical approaches, machine
learning techniques are simply a method for analysing
the data, providing a prescriptive or descriptive output.
For understanding and estimating causal relationships,
appropriate study designs are required, for example,
randomised controlled trials. Machine learning is often
characterised by five major approaches (i.e., association,
classification, clustering, relationship modelling and rein-
forcement learning), each having already been applied for
injury risk assessment and/or performance prediction in
sports [45—49]. Each of these approaches could serve as
the methods to answer questions relevant to RTS.

Question 1: Should the Athlete Progress to Full Training?
Scenario The athlete has completed 10 days of reha-
bilitation training. The practitioners would like to assess
whether the athlete is ready to progress to full training.
An association approach could be used here, using the
rule-based system (Table 2).

Rule-based approaches identify meaningful and fre-
quent patterns between variables in a large dataset [50].
Often less identifiable by the practitioner, the rules may
help them identify patterns that indicate optimal rehabil-
itation combinations of variables by flagging both com-
monly occurring and meaningful patterns in data.

In the above hypothetical example, a multivariate anal-
ysis of rules associated with a rehabilitation outcome is
conducted. The model was set to only produce 3 catego-
ries of rules that contained the rehabilitation outcome
as a result (i.e., ready for full training, not yet ready and
unchanged). These could be the three rules most strongly
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associated with the rehabilitation outcome. A tick rep-
resents the presence of the context within the rule. The
system could identify the number of rules required based
on previous rehabilitation experience and to implement
the rules when the complexity of the content is beyond
human brain capacity. An increased number of rules
may better represent complexity; however, it may poten-
tially make the solution more difficult to operationalize
practically.

Question 2: What is the Likelihood that the Athlete Could
Return to the Pre-injury Level Given the Current Level

of Training?

Scenario There are only 2 weeks until an important
match. The coach would like to know the likelihood that
the athlete could return to pre-injury level by then. Given
the volume of high-speed running training that the ath-
lete has completed, a classification method could be used
to identify the likelihood (Table 3).

A decision tree uses dichotomous divisions to create
the classification algorithm. Representing the rules, the
decision tree could be used to develop a clinical decision
algorithm for RTS [49, 51]. Each node denotes a test on
an attribute value and each branch represents an out-
come of the test, with the leaves representing the class.

The above is a graphical representation of the decision
tree that used a classification algorithm to identify the
probability of RTS from a hamstring injury. Each node
is associated with a rule condition, which branches off
to the child node. In this example, the outcome of RTS
is likely a non-linear relationship with the training vol-
ume and mental readiness, which is a characteristic of
the complex systems approach (see Table 1, example 5).
Using the classification approach may help to include
non-linearity into analyses.

Question 3: When is the Athlete Expected to Return to Sport?
Scenario The coach would like to know when the athlete
is expected to RTS based on the experience of the clini-
cian and also accounting for the athlete’s age. Clustering
technique could be used to analyse the past data.

Clustering allocates data points into groups that share
similar or dissimilar features [52]. In RTS, this may be
useful in the allocation of multiple athletes to training
groups. This could be done for clinical presentation, play-
ing position, demographics, or inter-and intra-personal
factors.

Table 4 visualizes one of the multiple approaches to
which injured athletes could be clustered. Each dot rep-
resents an injured athlete and is coloured based on their
severity. Size represents a measure of each athlete’s age,
with a larger size representing older age. They are further
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Table 2 The association approach to determine should the athlete progress to full training

Rule 1 Rule 2 Rule 3 Rule... Decision

Range of motion full Limb asymmetry index 100% Training load >100% match

requirement

v v x - Continue current

rehabilitation

Table 3 The classification approach to identify the likelihood for an athlete to RTS

Approach Classification

Task Supervised

Technique Decision tree and random forest
Output type Categorical or continuous

Examples: ready to compete, not yet ready to compete
Application example

<70% >70%

RTS at preinjury level: RTS at preinjury level:
40% 80%
Non RTS: 60% Non RTS: 20%

<85% ] [ >85% ] [ <85% ] [ >85%

RTS at preinjury
level: 65%
Non RTS: 55%

grouped into three different clusters, representing the  Question 4: The Athlete has a High Level of Mental

severity and time to RTS. In this hypothetical example, Readiness. Would that Change the Level of Confidence About

the model output is the predicted days to RTS. However, the Athlete’s Readiness to Play in an Important Game?

it could also be designed to produce categorical outputs  Scenario From the clustering approach, the coach has

such as being ready to train or not yet ready to train. considered that the athlete may require at least 2 weeks
to return to competition at pre-injury level. However, the
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Table 4 The clustering approach to identify when the athlete may return to sport

Approach Clustering

Task Unsupervised
Technique K-nearest neighbours
Output type Categorical

Examples: RTS grade, days to RTS

Application example

RTS 7-14 days

. Grade |

RTS 1-7 days

¥ | O

RTS 14-28 days

. Grade Il
@ oradem

coach noticed that the athlete had a high level of mental
readiness, as reflected by relevant measures (e.g., Injury-
Psychological Readiness to Return to Sport scale [53]).
The coach would like to know how this new informa-
tion, combined with the previous knowledge, may change
the practitioner’s judgement. A relalationship modelling
approach described below is used.

Relationship modelling involves estimating relation-
ships between a dependent variable and one or more
independent variables. Regression analysis, commonly
used in the analysis, is also a type of relationship mod-
elling technique and could be used with the complex
systems approach. For example, it could be used for mod-
elling the relationship between outcomes, such as match
results [54] and injury incidence [45].

Table 5 shows a hypothetical example of how the confi-
dence to RTS (y-axis) may be associated with the volume
of high-speed running done (x-axis) and the mental-
readiness score (size of the bubble). The level of mental
readiness is denoted by the size of the bubble. A higher
level of mental readiness is indicated with a larger size
bubble and is in green colour. A lower level is indicated
with a smaller size and is in red. The association could
be multi-dimensional and could be constructed based on
the number of inputs available, e.g., running speed, load
accumulation, psychological readiness.

Question 5: What is the Optimal Sequence of Rehabilitation
in a Case of Hamstring Injury Rehabilitation?

Scenario After reviewing the dataset, the coach and the
clinician would like to explore how to further leverage the
available data and identify adaptive personalized treat-
ment plans in the future. Reinforcement learning may
help to optimize the sequence of decisions that favour a
long-term outcome. Reinforcement learning is described
below.

Unlike supervised or unsupervised learning, reinforce-
ment learning trains itself through trial and error to
explore behaviours in the system that could maximize
the reward [55]. This feature makes it suitable for solv-
ing sequential decision problems. In this clinical vignette,
reinforcement learning could help to identify a personal-
ized rehabilitation pathway for maximizing the reward
(i.e., managing the injury or reaching the rehabilitation
goal).

In the context of a hamstring injury (see Table 6), a
practitioner has to decide when to initiate and adjust
rehabilitation training, such as jogging, eccentric ham-
string exercise, and high-speed running. Each decision
affects the athlete’s rehabilitation outcome at the end of
the program and the total days of absence. The rewards
require practitioners’ input, such as comparing the inten-
sity and volume of high-speed running to the pre-injury.
The reliability of the treatment-quality estimate depends
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Table 5 The relationship modelling approach to identify the effect of mental readiness

Approach Relationship modelling

Task Supervised

Technique Regression and neural networks
Output type Continuous

Application example 100

Confidence level (%)

Mental readiness score (%)
@ Llow0-30%
Moderate >30-75%

. High >75-100%

High-speed running volume

100

relative to previous level (%)

Table 6 Use of reinforcement learning to optimise the sequence of rehabilitation

Approach Reinforcement learning
Task Not applicable
Technique Markov decision process
Output type No output variable
Application example .

Jogging?

Eccent.rlc High speed
hamstring ,

e running?
exercise?

b

heavily on the amount of data that were used to train the
algorithm used in the reinforced learning, and the extent
to which the proposed and observed treatment policies
agree.

Bayesian Network

Besides the machine learning approach, Bayesian meth-
ods are becoming increasingly popular in the study of
sports [56] and may contribute to RTS. Various forms
of BN have been applied across different sectors, includ-
ing medical [57-61], ecology [62—64] and transportation
[65].

BN uses Bayesian inference for probability computa-
tions and can be visually presented using directed acyclic
graphs. Arrows on the BN, known as directed arcs, indi-
cate the direction of the influence [66]. These show how

various discrete or continuous factors in RTS influence
one another and the outcome in a graphical presenta-
tion [66]. BN allows calculation of the conditional prob-
abilities of the outcome of a decision when the value of
some of the factors has been observed. As new evidence
is revealed, changes are brought to the conditional prob-
ability of the decision outcome [67].

Question 6: How Would the Sex of the Athlete Affect

the Perceived ACL Injury Risk?

Scenario The athlete has now recovered from the ham-
string injury but is worried about the potential ACL
injury risk. The coach wants to know how the sex of the
athlete (prior) [as female] would affect how one perceives
the ACL injury risk (outcome) [higher risk of ACL injury]
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Sex Nature of Sports
Female 50% | | Contact_sports 50% [
Male 50%| Non_contact_sports 50%
ACL injury
High_risk 45% Il |
Low_risk 55%|'
a The Bayesian network with no prior.
Sex Nature of Sports
Female 100% [T | Contact sports  100% T |
Male 0% Non_contact_sports 0%

Low_risk 20%|

ACL injury
High_risk 80% NN |

prediction (ACL injury risk) has changed as a result

b The Bayesian network after it has been updated with prior.

Fig. 2 lllustration of a Bayesian network before (a) and after it has been updated with a prior (sex or/and nature of sport) (b). The outcome of the

(Fig. 2) [68], and how it may inform the potential conse-
quence of a RTS decision.

Only one prior is used here to explain the application
for easier understanding. However, a BN can account for
multiple variables to increase the accuracy of the model
and to acknowledge the complex systems approach, as
seen from a hypothetical example here in Fig. 3.

A BN could be operated in both directions, perform-
ing both predictive and diagnostic inference. As an
example, a BN may provide the following information to
support RTS decisions: (1) given the observation of the
athlete’s rehabilitation markers, what is the likelihood for
the athlete to perform at pre-injury level upon RTS? (2)
to increase the likelihood to achieve certain outcomes
of RTS, what is the combination of test results and/or
observations required?

Logically, BN seems to fit into the requirement of RTS
decisions, as often multiple unknown factors are involved
in the process (e.g., how wellness may be associated with
the injury risk). Although these unknown parameters
are uncertain, they could be described by a probability

distribution table, with information supplied by a domain
expert or relevant literature.

Establishing a BN requires data and could be comple-
mented by expert knowledge [66]. Expert knowledge
allows the model to specify the decision options available
and the utilities that the user is after. For example, deci-
sion-makers may decide if the utility (degree of satisfac-
tion) of the RTS outcome is based on either maximising
the team performance, minimising the risk of subsequent
injury, or equilibrium between the two. However, this
also implies that the quality of the model output would
rely on the quality of the existing evidence and expert’s
knowledge, which may be flawed or biased.

Future Research

A shift towards a complex systems approach may help to
view RTS more realistically. Future research should be
mindful of the following issues:

(1) The complex systems approach and the machine
learning techniques cannot necessarily elucidate the
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Dynamic knee valgus

Quadricep strength symmetry

l¢—Symetrical 100% [T |

Core Control

Strong 0%

Weak 100%

Hip Strength Good 100%

Poor 0%

Strong 0%

Asymmetrical 0%
strong 100% NN |
Weak 0% /
/ Psychological Readiness

Playing surface

Weak 100%

Sex

Female 100% NN |
Male 0%

Ory 100% [ |
Wet 0%

Nature of Sports

Contact sports

100% T |
Non_contact_sports 0%

Low_risk 30%

ACL injury

High_risk70% (NS |

Fig. 3 A hypothetical example of a Bayesian network with multiple priors for ACL injury risk

causal mechanism. Based on Table 1, the character-
istics of complex systems do not permit cause and
effect relationships to be determined. However, that
does not imply they are inappropriate for understand-
ing a problem nor they are of low practical utility.

The accuracy of the computation relies heavily on
the quality of the dataset and previous knowledge.
For example, what is the association between differ-
ent variables (e.g., age, playing style, previous injury
history, culture, and lifestyle)? What is the potential
effect of external factors (e.g., stress, financial pres-
sure, lack of social support) on RTS progress and
decision making? Currently, there is insufficient
evidence on these aspects. High quality randomized
controlled trials and longitudinal research that
acknowledges the complex systems approach are
required to observe regularities that are antecedent
to the success of a rehabilitation program.

The RTS systems that researchers could construct
would consist of what is available and known,
rather than what is important. Some factors may be
difficult to measure due to the availability of time,
resources and their non-deterministic or qualitative
nature [69]. For example, motivation for RTS during
rehabilitation is important but often not measured
due to difficulty obtaining accurate feedback. How-
ever, this is inevitable, as unknowns and unpredict-
ability are characteristics of complex systems. Nev-
ertheless, if possible, real data should be applied to

2)

prove the concept and provide useful output for
practitioners, as the ultimate goal of embracing
complex systems approaches in RTS is to produce
findings closer to the real world.

Conclusion

The complex systems approach has been applied to
understand different aspects of sports science and medi-
cine. This review has highlighted the characteristics and
terminologies of complex systems, as exhibited by a case
of ACL rehabilitation. When assessing the test result for
clinical and functional tests, practitioners should also be
aware of the dynamic systems evolving around the injury
rehabilitation (refer to the examples in Table 1) and
endeavour to understand the full picture. Future research
may make use of computational modelling and machine
learning techniques to identify the regularities of the
pattern that emerges as a whole. A paradigm shift that
results in the application of complex systems approach
to understanding the RTS process and decision making
should be encouraged.
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