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Abstract

Background: The outstanding performance of an elite athlete might be associated with changes in their blood
metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-
power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences.

Methods: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and
70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or
international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using
non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography.
Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in
metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models.

Results: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power
and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance
athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and
progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of
phospholipids and xanthine metabolites compared to moderate-power counterparts.

Conclusions: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct
metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related
metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes’
elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical
processes that could be utilized as biomarkers with potential therapeutic implications.
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Key points

� The emerging data provide a comprehensive
snapshot of athletes’ metabolism based on their
sports class as well as small molecule markers of
fitness, including changes in metabolites reflecting

sex steroid hormone biosynthesis and oxidative
stress substrates.

� The analysis confirmed previously reported changes
in the consumption of energy substrates in
glycolysis, lipolysis, adenine nucleotide catabolism,
and amino acid catabolism in response to exercise.

� Once replicated and validated, these metabolic
signatures could be utilized as biomarkers for
excessive trainability associated with elite athletic
performance with potential therapeutic implications.* Correspondence: nay2005@qatar-med.cornell.edu; melrayess@adlqatar.qa
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Background
Excessive training of professional athletes causes alter-
ations in their blood metabolic profile that depends
largely on the type and duration of their training regi-
men [1, 2]. Various behavioral, biochemical, hormonal,
and immunological markers are routinely used to assess
athletes’ physical status during a training program [3, 4].
Previous studies, however, have demonstrated that con-
ventional tests could not detect the physiological differ-
ences between endurance athletes and control subjects,
or differences before and after training sensitively [5, 6].
Therefore, a more comprehensive metabolic profiling
has been considered in order to identify global physio-
logical changes in response to training.
Metabolomics offers a quantitative measurement of

the metabolic profiles associated with exercise in profes-
sional athletes in order to identify biomarkers associated
with their performance, response to fatigue, and poten-
tially their respective sports-related disorders [5, 7].
Non-targeted metabolomics allows the detection of
changes in response to various physiological states such
as pre-/post-exercise and offers identification of meta-
bolic signatures with potential translational impact for
both professional athletes and general public [8]. These
changes include metabolites associated with glucose,
lipid, amino acid, and energy metabolism [1, 5], such as
those involved in adenosine triphosphate (ATP) synthe-
sis, beta-oxidation of free fatty acids, and ketone bodies
[8]. Previous studies in healthy volunteers have demon-
strated significantly reduced excretion of amino acids
with increased fitness levels and increased fat oxidation
rate during exercise [9]. Furthermore, metabolomics
profiling of athletes undergoing intensive exercise re-
vealed increase in plasma lactate [10, 11] and adenine
breakdown products [12], indicating anaerobic metabol-
ism and ATP cycling, respectively. Further studies of the
effect of exercise showed elevated tricarboxylic acid
(TCA) cycle intermediates, markers of aerobic energy
production, in skeletal muscle biopsies [13, 14]. Intensive
exercise was also shown to trigger changes in the levels
of amino acids, including a moderate uptake of glutam-
ate in skeletal muscle leading to release of alanine to
promote ammonia metabolism [11, 15, 16], with corre-
sponding changes in plasma concentrations of these me-
tabolites [17, 18]. Elevation in serum levels of sex steroid
hormones was also reported in endurance athletes only
in response to high exercise intensities [19].
Athletes who have competed in national or inter-

national sports events are considered elite athletes and
have been classified into two broad types according to
the kind and intensity of exercise: dynamic (isotonic)
and static (isometric) [20, 21]. The dynamic exercise rep-
resents changes in the muscle length due to regular con-
tractions producing a limited intramuscular power.

These changes are characteristic of high-endurance
sports such as marathon running, cycling, or long-
distance triathlons. Static exercise, on the other hand,
leads to a greater intramuscular power with little
changes in muscle length and is characteristic to power
sporting events such as sprinting, jumping, throwing,
and weightlifting. Some sports, however, require both
power and endurance such as boxing and rowing.
Dynamic exercise can also be further characterized
based on the maximal oxygen uptake percentage (VO2)
achieved with maximum cardiac output. Static exercise
can too be sub-categorized in relation to maximal volun-
tary contraction percentage (MVC) gained with increas-
ing blood pressure [21].
Despite multiple studies focusing on the impact of ex-

ercise on athletes’ metabolomics profiling, the metabolic
differences between high- and moderate-power and en-
durance athletes remain to be explored. This study aims
to identify the metabolic signature that differentiates
high- and moderate-power and endurance elite athletes
and to identify the potential metabolic pathways that
underlie these differences. Assessment of these changes
could provide valuable measures of the current physical
status of the athletes and their adaptation to training,
which may help directing future training programs, pre-
venting potential disorders associated with excessive ex-
ercise as well as improving their overall performance.

Methods
Study design
Study participants included in this study were 191 con-
sented elite athletes (171 males and 20 females) from
different sports disciplines who participated in national
or international sports events and tested negative for
doping substances at anti-doping laboratories in Qatar
and Italy. Spare serum samples collected for anti-doping
human growth hormone tests were used for metabolo-
mics studies. Briefly, samples were either collected IN or
OUT of competition. Once collected, samples were de-
livered to the anti-doping labs within 36 h under cooling
conditions. Once received, samples were immediately
centrifuged to separate the serum and then stored at −
20 °C until analysis. Only information related to type of
sport and athlete’s gender were available to researches.
All other information was not available, including age,
ethnicity, or the time of recruitment (pre- or post-
exercise), due to the strict anonymization process under-
taken by anti-doping laboratories and those dictated by
study’s ethics. This study was performed in line with the
World Medical Association Declaration of Helsinki. All
protocols were approved by the Institutional Research
Board of anti-doping lab Qatar (F2014000009). Sport
types can be dichotomized into low, moderate, and high
dynamic or static groups based on associated peak
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dynamic (VO2) and peak static (MVC) components
achieved during competition, as suggested previously
[21]. In our study, few athletes belonged to low levels of
endurance and power, therefore were merged with the
corresponding moderate class of endurance and power,
respectively (Table 1A). For statistical analysis, endur-
ance and power athletes were each represented by a cat-
egorical variable with two levels (high and moderate,
Table 1B). Table 1 further lists the number of partici-
pants per sport type in each class and their genders.

Metabolomics
Metabolomics profiling was performed using established
protocols at Metabolon, Durham, NC, USA. All methods
utilized a Waters ACQUITY ultra-performance liquid
chromatography (UPLC) and a Thermo Scientific Q-
Exactive high resolution/accurate mass spectrometer
interfaced with a heated electrospray ionization (HESI-II)
source and Orbitrap mass analyzer operated at 35,000
mass resolution. The detailed description of the liquid
chromatography-mass spectrometry (LC-MS) method-
ology was previously described [22] and is summarized in
the Additional file 1. Briefly, serum samples were metha-
nol extracted to remove the protein fraction. The resulting

extract was divided into five fractions: two for analysis by
two separate reverse phase (RP)/UPLC-MS/MS methods
with positive ion mode electrospray ionization (ESI), one
for analysis by RP/UPLC-MS/MS with negative ion mode
ESI, one for analysis by hydrophilic interaction chroma-
tography (HILIC)/UPLC-MS/MS with negative ion mode
ESI, and one sample was reserved for backup. Raw data
was extracted, peak-identified, and quality control-
processed using Metabolon’s hardware and software [23].
Compounds were identified by comparison to library en-
tries of purified standards or recurrent unknown entities
with more than 3300 commercially available purified
standard compounds. Library matches for each compound
were checked for each sample and corrected if necessary
[22]. Asterisks (*) indicated on IDs of some metabolites in
Tables 2 and 3, Additional file 2: Tables S2–S3 and S5–S8
refer to compounds that have not been officially
confirmed based on a standard, but their identities are
known with confidence.

Statistical analysis of metabolomics data
Multivariate analysis
Metabolomics data were log-transformed to ensure dis-
tribution normality. Batch correction was already

Table 1 Classification of study participants

(A) Distribution of elite athletes in various categories based on sport type-associated peak dynamic (maximal oxygen uptake percentage; VO2) and peak static
(maximal voluntary muscle contraction percentage; MVC) components achieved during competition as described previously [21]. The number and gender (M for
males and F for females) of participants in each group are also indicated. (B) Categorization of sport types into classes based on power alone regardless of
endurance (left) and similarly for endurance alone ignoring power (right); these classes were used in the statistical analysis
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performed by Metabolon by rescaling each metabolite so
that its median is equal to 1. Principle component ana-
lysis (PCA) was initially undertaken using multivariate
techniques to achieve a global view of the data. PCA
components express a linear combination of the

metabolites levels weighted by the component’s loading
values. Orthogonal partial least square discriminant ana-
lysis (OPLS-DA), a supervised multivariate regression
technique, was performed to identify components that best
differentiate between predefined classes of samples while

Table 2 Metabolites differentiating between moderate- and high-endurance athletes (Bonferroni significance)

Metabolite Sub-pathway Fold change Bonferroni p value

1-stearoyl-GPC (18:0) Lysolipid − 0.15595 1.72E-05

Vanillylmandelate (VMA) Phenylalanine and tyrosine metabolism 0.415133 2.29E-05

21-hydroxypregnenolone disulfate Steroid 0.365863 0.000107398

Palmitoyl-linoleoyl-glycerol (16:0/18:2) [2]* Diacylglycerol − 0.46764 0.000130998

Tartronate (hydroxymalonate) 0.290077 0.000657114

Palmitoyl-linoleoyl-glycerol (16:0/18:2) [1]* Diacylglycerol − 0.42202 0.00090176

1-palmitoleoyl-GPC (16:1)* Lysolipid − 0.22642 0.001172265

Cortisone Steroid 0.395892 0.001489996

Citrate TCA cycle 0.200056 0.001784274

Succinimide Polyamine metabolism 0.279317 0.002636335

Stearoylcarnitine (C18) Fatty acid metabolism (acyl carnitine) − 0.28394 0.002953686

Trans-4-hydroxyproline Urea cycle; arginine and proline metabolism − 0.27783 0.00295413

4-guanidinobutanoate Polyamine metabolism − 0.44969 0.003796483

Dihomo-linoleoylcarnitine (C20:2)* Fatty acid metabolism (acyl carnitine) −0.33166 0.005028391

1-(1-enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1)* Plasmalogen 0.145176 0.005178692

1-palmitoyl-GPC (16:0) Lysolipid − 0.11595 0.005429078

Linoleoyl-linoleoyl-glycerol (18:2/18:2) [1]* Diacylglycerol − 0.54301 0.005827373

Gamma-glutamylglutamate Gamma-glutamyl amino acid − 0.42069 0.006242208

Pregnanediol-3-glucuronide Steroid 0.44061 0.006441558

Palmitoyl-arachidonoyl-glycerol (16:0/20:4) [2]* Diacylglycerol − 0.47247 0.008366458

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) Phospholipid metabolism − 0.1648 0.009358338

Cortisol Steroid 0.471022 0.009967366

Linoleoyl-linolenoyl-glycerol (18:2/18:3) [2]* Diacylglycerol − 0.53635 0.012030273

Homoarginine Urea cycle; arginine and proline metabolism − 0.22816 0.013313047

Palmitoleoyl-linoleoyl-glycerol (16:1/18:2) [1]* Diacylglycerol − 0.42989 0.015554355

Lactosyl-N-palmitoyl-sphingosine (d18:1/16:0) Sphingolipid metabolism 0.131658 0.017917489

3-hydroxydecanoate Fatty acid, monohydroxy 0.346756 0.018411909

Pregnenolone sulfate Steroid 0.332031 0.01854452

Pregnenolone steroid monosulfate* Steroid 0.292548 0.024089561

Leukotriene B4 Eicosanoid − 0.84063 0.027085708

Vanillactate Phenylalanine and tyrosine metabolism 0.214757 0.028124765

12-HETE Eicosanoid − 0.63302 0.028449419

Acetylcarnitine (C2) Fatty acid metabolism (acyl carnitine) 0.337317 0.033107027

N1-methyladenosine Purine metabolism, adenine containing 0.121048 0.036870759

Isovalerate Leucine, isoleucine and valine metabolism − 0.52129 0.039358891

5-hydroxylysine Lysine metabolism − 0.39575 0.040606024

1,3,7-trimethylurate Xanthine metabolism 0.671617 0.045828468

Fructose Fructose, mannose and galactose metabolism 0.391699 0.053677595

Asterisks (*) indicated on IDs of some metabolites refer to compounds that have not been officially confirmed based on a standard, but their identities are known
with confidence
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dissecting orthogonal components which do not differenti-
ate between these classes. In this study, OPLS-DA was
used to compare moderate versus high classes of endur-
ance and power separately. Both PCA and OPLS-DA were
run using SIMCA 14 with the default metabolite-wise
metabolite missingness threshold (percentage of missing
metabolite values across the samples) of 50%.

Univariate regression and enrichment analysis
Linear models for association analysis were run using the
R statistical package (version 2.14, www.r-project.org/). A
model incorporating power and endurance as a categorical
variable with two levels (moderate and high) was used. In-
corporating both endurance and power in the same
model made it possible to examine the effect of power

Table 3 Metabolites that differentiate moderate- versus high-power athletes

Metabolite Sub-pathway Fold change Bonferroni p value

1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1)* Phospholipid metabolism 0.577623 5.92E-11

1-palmitoyl-2-oleoyl-GPI (16:0/18:1)* Phospholipid metabolism 0.42177 1.10E-07

Imidazole lactate Histidine metabolism 0.447699 1.88E-06

1-stearoyl-2-oleoyl-GPC (18:0/18:1) Phospholipid metabolism 0.279019 4.51E-06

1-linolenoyl-GPC (18:3)* Lysolipid 0.414819 1.10E-05

1-linoleoyl-2-linolenoyl-GPC (18:2/18:3)* Phospholipid metabolism 0.537975 1.11E-05

1-palmitoyl-2-linoleoyl-GPI (16:0/18:2) Phospholipid metabolism 0.447877 5.88E-05

1-palmitoyl-GPI (16:0) Lysolipid 0.438221 0.000101

Indolelactate Tryptophan metabolism 0.30948 0.000178

3-methylxanthine Xanthine metabolism 0.788924 0.00021

1,2-dilinoleoyl-GPC (18:2/18:2) Phospholipid metabolism 0.324133 0.000225

1-lignoceroyl-GPC (24:0) Lysolipid 0.321129 0.000287

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) Phospholipid metabolism 0.222855 0.000322

N-acetylcarnosine Dipeptide derivative − 0.33185 0.000873

1-stearoyl-2-oleoyl-GPI (18:0/18:1)* Phospholipid metabolism 0.346165 0.001026

N-acetylmethionine Methionine, cysteine, SAM,
and taurine metabolism

− 0.58119 0.001445

1-palmitoyl-2-oleoyl-GPC (16:0/18:1) Phospholipid metabolism 0.153562 0.002983

Argininate* Urea cycle; arginine and proline metabolism 0.422405 0.003294

7-methylxanthine Xanthine metabolism 0.648043 0.004023

Homoarginine Urea cycle; arginine and proline metabolism − 0.27429 0.006606

Gamma-glutamylvaline Gamma-glutamyl amino acid − 0.3052 0.008009

Sphingosine 1-phosphate Sphingolipid metabolism − 0.20846 0.008168

Phenyllactate (PLA) Phenylalanine and tyrosine metabolism 0.306398 0.009708

Arabitol/xylitol Pentose metabolism 0.23942 0.015147

1-palmitoleoyl-GPC (16:1)* Lysolipid 0.229408 0.017685

Methionine sulfone Methionine, cysteine, SAM,
and taurine metabolism

0.308995 0.02004

Guanidinoacetate Creatine metabolism − 0.22401 0.035446

1-stearoyl-2-linoleoyl-GPI (18:0/18:2) Phospholipid metabolism 0.261839 0.036305

Sphingomyelin (d18:2/14:0, d18:1/14:1)* Sphingolipid metabolism 0.216635 0.036711

4-cholesten-3-one Sterol 0.242711 0.037246

1-palmitoyl-GPG (16:0)* Lysolipid 0.309379 0.040079

Cholate Primary bile acid metabolism 1.182236 0.041373

1-palmitoyl-GPE (16:0) Lysolipid 0.230631 0.049265

1-stearoyl-2-linoleoyl-GPC (18:0/18:2)* Phospholipid metabolism 0.118022 0.052877

Asterisks (*) indicated on IDs of some metabolites refer to compounds that have not been officially confirmed based on a standard, but their identities are known
with confidence
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while correcting for endurance and vice versa. This is
sensible because the high-endurance class features a
mixture of high- and moderate-power sports while the
moderate-endurance class features only moderate-
power sports. An opposite pattern is observed with
power (Table 1B). With both analyses, covariates in-
cluding gender, hemolysis levels (determined visually
by Metabolon), and PCA components 1 and 2 were in-
cluded in the model. A stringent Bonferroni level of sig-
nificance of p ≤ 0.05/743 = 6.72 × 10 − 5 was used to infer
association. False discovery rate (FDR) multiple testing
correction was also performed. All p values included in
Tables 2 and 3, Additional file 2: Tables S2–S6 are re-
ported after performing the described multiple testing
correction. In order to identify metabolites that were
associated with endurance or power differently in males
versus females (endurance/power × gender), an inter-
action term was added to the model. For simplicity, when
conducting the interaction analysis, both endurance and
power were used as continuous variables (since both come
in only two levels); hence, the analysis was reduced to test-
ing differences in the beta values between males and
females (where beta expressed the slope measuring the
effect of either power or endurance).
Function enrichment analysis was performed using the

one-tailed Wilcoxon sum of the ranks test. For a given
biological function, the test assesses the probability of
observing the identified ranks of related metabolites
from the linear model analysis by chance. To gain fur-
ther insight into the biochemistry of identified metabo-
lites, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways were utilized. For heatmap analysis,
metabolites were z-scaled by subtracting their means
followed by division by standard deviations.

Results
Multivariate analysis of athlete metabolomics data
Non-targeted metabolomics was applied to determine the
metabolic signatures of 191 elite athletes. PCA compo-
nents 1 and 2 (PC1 and PC2) captured together 25% of
the variance in the data. PC1 revealed two clusters of sam-
ples, which were not explained by gender, sport types, or
classes (Fig. 1a). Examination of the loading plot in Fig. 1b
revealed a concentration of hemoglobin and heme metab-
olites at the positive end of PC1. Furthermore, a t test
comparing the hemolysis measurement, between the two
clusters of samples revealed by PC1, was significant at the
0.01 significance level. These results led to the conclusion
that PC1 captured the extent of hemolysis in the samples.
Interestingly, there was also an enrichment of arachido-
nate phospholipid metabolites at the positive end of PC1
as oppose to an enrichment of eicosanoids at the negative
end. While the biochemical link between the two sets of
metabolites is an obvious substrate/product relationship,

the link to hemolysis was rather obscure. There were no
clusters of samples according to PC2 (Fig. 1a). A closer
look at the loading plot revealed that TCA energy metabo-
lites and amino acids that feed into TCA cycle were
mostly located at the positive end of PC2 (Fig. 1c). More-
over, a significant positive correlation between previously
identified changes in metabolites following 1 hour post-
endurance exercise [1], also listed in Additional file 2:
Table S1, and our PC2 loading values for the same metab-
olites (R = 0.6, p = 0.005) was identified. The enrichment
of dipeptides at the negative end of PC2 could indicate an
opposing anabolic effect. Although PCA did not explain
sport classes, it provided clues of possible confounders
(hemolysis and pre/post exercise) that we corrected for
subsequent analyses.
Unlike PCA, OPLS-DA can identify sets of metabolites

that best distinguish between predefined classes of samples.
An OPLS-DA analysis comparing moderate versus high
classes of endurance revealed one class-discriminatory
component accounting for 66.7% of the variation in the
data due to endurance level (R-squared-Y = 0.66, Q-
squared = 0.45) (Fig. 2a). The corresponding loading score,
shown in Fig. 2b, suggests a reduction in diacyl glycerols
and gamma-glutamyl amino acids as oppose to an increase
in steroids, GABA derivatives, and monohydroxy fatty
acids with higher endurance levels.
OPLS-DA also revealed a clear separation between

moderate versus high power. One significant predict-
ive component explaining 88% of the variation in the
power (R-squared-Y = 0.88, Q-squared = 0.52) was
identified (Fig. 3a). The loading plot on Fig. 3b sug-
gests a decrease in gamma glutamyl amino acids as
oppose to an increase in sterols, phospholipids, lysoli-
pids, and xanthine metabolites with increased power.
OPLS results were confirmed by linear model in the
following section.

Univariate association tests and function enrichment analysis
Endurance-associated metabolites
A linear model was used to assess the significance of
metabolite-associations with the athletes’ class (moderate
versus high endurance) after correcting for gender,
hemolysis levels, PC1, PC2, and power. Thirty-eight me-
tabolites associated with endurance at a Bonferroni level
of significance (p ≤ 0.05/743 = 6.72 × 10−5) were identi-
fied and their associated pathways listed (Table 2). More
metabolites associated with endurance at FDR and nom-
inal levels of significance are shown in Additional file 2:
Table S2. Similar results were obtained when analysis
was restricted to males only (Additional file 2: Table S3).
Enrichment analysis revealed an over-representation of

diacylglycerols, gamma-glutamyl amino acids, eicosanoids,
and monohydroxy fatty acids (FDR-corrected p-value
0.000122, 0.005, 0.017, and 0.04, respectively) among
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metabolites most strongly associated with endurance, irre-
spective of the direction of change. The steroid class
scored a nominal p-value of 0.05 but failed to remain sig-
nificant after FDR-based multiple testing. Interestingly,
these results are in considerable agreement with metabolic
effects identified through the OPLS-DA multivariate
approach previously discussed (Fig. 2b).
The results pertaining to steroids are certainly remark-

able if replicated and will be elaborated further in the

“Discussion” section. It is important to note that in
addition to the six Bonferroni significant steroids listed in
Table 2, seven more steroid species were FDR significant
at alpha = 0.05. These are etiocholanolone glucuronide
(FDR p value = 0.003); 5alpha-pregnane-3beta,20alpha-
diol disulfate (FDR p value = 0.01); 5alpha-pregnane-
3beta,20beta-diol monosulfate (FDR p value = 0.02);
androstenediol (3beta,17beta) disulfate (FDR p value =
0.025); 5alpha-pregnane-3beta,20alpha-diol monosulfate

Fig. 1 PCA analysis of athlete metabolomics data. a A score plot of PC1 and PC2 indicating clustering of samples into two groups according to
PC1. Neither PCs is explained by sport type or class. b, c Loading plots offering clues on what the two PCs may represent: The heme/hemoglobin
metabolites suggests a hemolysis signature for PC1 (b) while the TCA energy metabolite highlighted by PC2 indicates an energy generating
process which may be associated with exercise (c)
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(FDR p value = 0.029); pregnen-dioldisulfate (FDR p
value = 0.035); and androstenediol (3alpha, 17alpha)
monsulfate (FDR p value = 0.04). All Bonferroni and
FDR significant steroid metabolites were projected onto
KEGG Steroid Biosynthesis Pathway to highlight their
biochemical inter-relationships (Fig. 4). Significant cor-
relations among the identified steroid metabolites were
confirmed (Additional file 3: Fig. S1, Additional file 2:
Table S4), suggesting activation of sex steroid biosyn-
thesis pathway in high-endurance athletes.
A part of enrichments of functionally related sets of

metabolites, endurance association analysis also revealed
individual metabolic effects which are noteworthy.
Among these are derivatives of GABA cyclic lactam 2-
pyrrolidinone including succinimide (Bonferroni p value
= 0.00263), acisoga or N-(3-acetamidopropyl)pyrrolidin-
2-one (FDR p value = 0.004), and 2-pyrrolidinone itself
(FDR p value = 0.03) as well as GABA derivative 4-
guanidinobutanoate (Bonferroni p value = 0.004). There
were significant correlations between 2-pyrrolidinone and
its derivatives including succinimide (R = 0.15, p = 0.04),
4-guanidinobutanoate (R = − 0.146, p = 0.04), and guanidi-
nosuccinate (R = − 0.186, p = 0.01), suggesting presence of
this drug and its derivatives in high-endurance athletes,
also seen in OPL-DA analysis (Fig. 2b).

Other interesting effects include a Bonferroni signifi-
cant increase in citrate together with an FDR significant
increase in 2-methylcitrate (FDR = 0.012). Other associa-
tions include acyl carnitines, phospholipids, and sphin-
golipids among others (Table 2).

Power associated metabolites
When considering power, the categorical variable
“power” becomes the explanatory variable of interest in
the previous model and “endurance” becomes a con-
founder that is corrected for. Thirty-three metabolites
were significantly associated with power according to
this model; these are listed in (Table 3). Enrichment
analysis revealed an over-representation of phospholipids
(p = 0.00042), lysolipids (p = 0.00042), gamma-glutamyl
amino acids (p = 0.000846), and sterols (p = 0.005)
amongst metabolites most strongly associated with
power. Other significantly changed metabolites in mod-
erate- versus high-power classes included guanidinoace-
tate, N-acetylcarnosine, cholate, imidazole lactate,
indolelactate, and 3-methylxanthine (Table 3).
Among FDR significant changes, an increase in

creatine (estimate = 0.6, p = 0.001) and a decrease in
creatinine (estimate = − 0.1, p = 0.002) were also

Fig. 2 OPLS-DA model comparing moderate- versus high-endurance classes of elite athletes. a A score plot showing the class-discriminatory
component (x-axis) versus orthogonal component (y-axis). b The corresponding loading plot showing a clustering of steroids and monohydroxy-
fatty acids at the high end of endurance opposed by a clustering of diacyl-glycerols and gamma-glutamyl amino acids at the negative end
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detected in the high-power group although did not
reach Bonferroni significance. More metabolites asso-
ciated with power at FDR level of significance are
shown in Additional file 2: Table S5. Similar results
were obtained when analysis was restricted to males
only (Additional file 2: Table S6).
Metabolites with FDR corrected p values of less than

0.01 from the endurance and power models were
projected on the heatmap in Figs. 5 and 6, respectively.
The heatmaps give a snapshot summary of the actual

intensities of these metabolites after correcting for con-
founders in the linear model described earlier. Samples
were ordered by sports type within their respective sport
groups (moderate power/moderate endurance, moderate
power/high endurance and high power/high endurance).

Gender-sports class interaction
Gender-endurance interaction analysis identified 60 sig-
nificant metabolites with a nominal p value (less than
0.05) amongst which none remained significant after

Fig. 4 A schematic diagram summarizing the biochemical relationships between steroid metabolites found significantly associated with high
endurance (shaded boxes). This is based on the steroid hormone biosynthesis reference pathway (map00140) from the Kyoto Encyclopedia of
Genes and Genomes (KEGG)

Fig. 3 OPLS-DA model of moderate- versus high-power classes of elite athletes. a A score plot showing the class-discriminatory component on
the x-axis versus the first orthogonal component on the y-axis. b The corresponding loading plot showing a clustering of sterols, lipids, and
xanthine metabolites at the high end of power as opposed to enrichment of gamma-glutamyl amino acids at the low end of power
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FDR correction (Additional file 2: Table S7). As for
power, 144 metabolites were differently associated with
power between males and females, among which 35 me-
tabolites remained significant after FDR correction
(Additional file 2: Table S8).

Discussion
Metabolic profiling of athletes’ blood in response to ex-
ercise has recently revealed unique metabolic signatures
associated with various types and durations of exercise
[1, 8]. However, metabolomics of elite athletes from

Fig. 5 Heatmap of metabolites significantly associated with high endurance from the linear model association analysis (y-axis). Samples on x-axis
were ordered by sports type and group. The color code denotes z-scaled values of metabolites after correction of confounders

Fig. 6 Heatmap of metabolites significantly associated with high power from the linear model association analysis (y-axis). Samples on x-axis were
ordered by sports type and group. The color code denotes z-scaled values of metabolites after correction of confounders
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different sport disciplines remains to be investigated. In
particular, the metabolic pathways of endurance and
power athletes should shed light on the molecular mech-
anisms underlying variations with functional relevance
or those that can be used as potential biomarkers for
their respective sport class. In this study, metabolomics
analysis was utilized to characterize the unique serum
metabolic signature of elite athletes who participated in
national or international sports events following the suc-
cessful completion of anti-doping tests. Despite limited in-
formation about the participants and possible
confounding factors influencing their metabolic profiling,
the emerging data revealed significant differences in me-
tabolite levels between high- versus moderate-power and
endurance sport types. Inclusion of PC1 and PC2 in the
linear model has likely corrected for expected confounders
including hemolysis and pre-post exercise effects to reveal
common as well as distinctive metabolic mechanisms
underlying endurance and power. These include a clear
signature of oxidative stress common to both high-power
and high-endurance sports alike, yet steroids and poly-
amine pathways appeared more prominent in endurance,
while sterols, adenine-containing purines, and energy me-
tabolites were most evident with power.

Metabolites associated with endurance
Exercise can cause changes in sex steroid hormone
concentrations in the serum of non-athletes as well as ath-
letes [19, 24], including levels of testosterone and cortisol
[25, 26]. One interesting finding in this study is the ele-
vated levels of various metabolites involved in sex steroid
hormone biosynthesis in the high-endurance athletes.
Some of these metabolites were conjugated with one or
more sulfate group(s) which renders them inactive. How-
ever, these can be reactivated through the activity of
enzyme steroid sulfatase [27]. The list of elevated steroids
included pregnenolone that mediates biosynthesis of corti-
costeroids and progesterone and 21-hydroxypregnenolone
disulfate that mediates biosynthesis of corticosteroids,
corticoids (cortisol and cortisone), various metabolites
of progesterone (pregnanediol, 5alpha-pregnane-
3beta,20alpha-diol, 5alpha-pregnane-3beta,20beta-diol),
testosterone precursor (androstenediol (3beta,17beta)),
and testosterone metabolites (etiocholanoloneglucuro-
nide, androstenediol (3alpha, 17alpha)) (Fig. 4).
Elevated cortisol-related metabolites in response to sus-
tained aerobic exercise were shown to correlate
positively with intensity of exercise as measured by oxy-
gen uptake [28]. However, exercise-induced alterations
in sex steroid hormone levels are usually short lived
(1–3 h) [19]. The habitual exercise regiments of the
elite endurance athletes may have accounted for this
maintained systemic increase. Sex steroid hormones
play a crucial role in glucose metabolism and protein

synthesis in the muscle as well as in the regulation of
redox homeostasis [29–31]. Some act as neurosteroids
that alter neuronal excitability such as pregnen-
dioldisulfate that works as a potent negative allosteric
modulator of the GABAA receptor [32] and pregneno-
lone sulfate that acts as a potent negative allosteric
modulator of the GABAA receptor and a weak positive
allosteric modulator of the NMDA receptor [33]. The
stimulatory effects of steroids on muscle mass, energy
generation, and neuronal excitability may have
accounted for the higher endurance ability of the high-
endurance group compared to their lower endurance
counterparts. Given that athletes included in this study
have successfully passed anti-doping tests, changes in
steroids levels may reflect either enhancement in en-
dogenous anabolic steroids biosynthesis, physiological
adaptation to exercise, and/or increased dietary intake.
A genetic association study is needed to reveal the po-
tential genetic variants underlying increased activity of
enzymes involved in steroid biosynthesis. Interestingly,
in addition to elevation in a number of neurosteroids,
our data suggested increased elevated levels of a number
of GABA derivatives including 2-pyrrolidinone, the cyclic
lactate form of GABA [34], its derivatives succinimide,
acisoga (N-(3-acetamidopropyl)pyrrolidin-2-one), and 4-
guanidinobutanoate, perhaps contributing to GABA-
mediated muscle growth in response to exercise [35].
Other metabolic changes associated with high endur-

ance included reduced diacylglycerols (DAGs) and fatty
acid (FA)-carnitine and increased acylated carnitine. Al-
terations in these lipids may suggest enhanced hydrolysis
of DAGs, shuttling of FA intracellularly, followed by
fatty acid oxidation and energy generation [36]. Fatty
acids and lipids are preferred substrates for exercising
the muscle, and the emerging data suggest a greater beta
oxidation of fatty acids in athletes belonging to higher
endurance sports. Hence, those athletes are perhaps more
capable of activating lipolysis during physical activity than
moderate-endurance athletes. Furthermore, accumulation
of acylated carnitine may provide a favorable effect on the
recovery from exercise stress since carnitine can reduce
post-exercise plasma lactate and prevent cellular damage
[37]. Citrate and isocitrate were also significantly increased
in high-endurance elite athletes, indicating enhanced aer-
obic energy generation through TCA.

Metabolites associated with power athletes
Changes in creatine, creatinine, and guanidinoacetate
were significant between high- and moderate-power ath-
letes. Whereas creatine increased in the high-power
group, its breakdown product (creatinine) and precursor
(guanidinoacetate) were both significantly reduced, thus
maintaining the previously reported balance of creatine
metabolism [38]. Creatine (Cr) and creatine phosphate
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(CrP) play essential roles in the storage and transmission
of phosphate-bound energy. Changes in creatine homeo-
stasis in high-power athletes may suggest more adapt-
able muscular storage of CrP that during exercise can
constitute an essential source for high energy to replen-
ish ATP in the first few seconds of intense activity.
Other energy-related metabolites elevated in high-power
athletes were 3-methylxanthine and 7-methylxanthine
(adenine breakdown products), perhaps reflecting
heightened utilization of fuel substrates in several meta-
bolic pathways [39]. Xanthine supplementation allows
athletes to exercise at a greater power output for longer
times [40]. Additionally, N-acetylcarnosine was signifi-
cantly reduced in high-power athletes. This metabolite
acts as oxidative stress scavenger in muscles especially
against lipid peroxidation through its imidazolium group
that stabilizes adducts formed at the primary amino
group [41]. Various derivatives of phosphatidates were
increased with increased power, perhaps reflecting
changes in cellular membrane dynamics in response to
oxidative stress [42]. Among those, inositol phospho-
lipids were previously shown to accumulate in response
to muscle contraction during hypoxia [43]. Another me-
tabolite likely to be a result from stress-induced mem-
brane dynamics is 12,13-DHOME. This long-chain fatty
acid enhances adipogenesis and inhibits asteogenesis due
to its role as a proliferator-activated receptor (PPAR)
gamma 2 ligand [44].

Global stress response in both high-power and
high-endurance athletes
Intensive exercise has been implicated in the promo-
tion of free radical generation in active skeletal
muscle resulting in the formation of oxidized lipids
[42]. Overall in both power and endurance athletes,
there was a clear stress metabolic response. Changes
in gamma-gultamyl amino acids, associated with ele-
vated cysteine-glutathione disulfide (change 0.24,
nominal p value of 0.03), between high- and moderate-
performance athletes may indicate active gamma-glutamyl
cycle that plays an important role in the glutathione-
mediated radical detoxification during oxidative stress
[45]. The cycle involves synthesis and degradation of
glutathione by transferring gamma-glutamyl functional
groups from glutathione to an amino acid, leaving the
cysteine products intact, which leads to the preservation
of intracellular homeostasis in case of oxidative stress
[46, 47]. Reduction in serum levels of gamma-glutamyl-
amino acids in high-performance athletes (both high
power and high endurance) may indicate increased
glutathione synthesis. The accumulation of glutathione
in the blood stream marks increased oxidative stress
and reactive oxygen species scavenging activity.

Gender-related differences
Despite lack of FDR significant differences in metabolites
associated with endurance in males versus females,
differences in a number of metabolites were nominally
significant, including a number of gamma-glutamyl
amino acids and steroid metabolites among others.
Differences in these metabolites between high and mod-
erate levels of endurance were mostly going in the same
direction in males and females but were more
pronounced in females. As per power-associated metab-
olites, there were FDR significant differences between
males and females in a number of metabolites including
TCA-mediators such as malate, fumarate, succinate, and
alpha keto glutarate as well as lactate where in females
there was increase with higher power with no FDR sig-
nificant effects in males. These gender-related differ-
ences need to be further investigated, especially in light
of low number of studied females (n = 20).

Study limitations
One main limitation of this study is the relatively low
number of participants, especially the females; therefore, a
replication study is essential for confirmation of these
findings. Furthermore, since athletes’ blood samples were
collected at multiple sites, a batch effect was inevitable,
likely attenuating correlations between metabolite concen-
trations and sports class. This batch effect may have in-
cluded various crucial pre-analytical features that can
significantly influence the metabolic profiling of samples
such as the blood collection process and time (IN or OUT
of competition) and transportation conditions, including
time to reach anti-doping laboratories, sample processing,
and sample storage [48]. Despite these factors, clear signa-
tures were identified after correcting for potential con-
founders. Additionally, the lack of information about
participants including their age, ethnicity, and body mass
index was another major limitation of this study. However,
the young age of elite athletes in general and the wide
range of sports included in this study may have diluted
out other potential confounders. Ambiguity in the exact
description of the subcategories of athletes’ sports was an
additional issue this study has faced due to the limited in-
formation provided by the anti-doping laboratories follow-
ing the strict anonymization process. This has prompted
the adoption of the general sports class grouping based on
previously published work [21] despite the differences
among different members of the same team such as such
as breast-stroke and freestyle swimming or football mid-
fielders and goal keepers. Another limitation of this study
is the group number bias as some sports were overrepre-
sented and others underrepresented. Finally, differences in
dietary intake between high- and moderate-power and en-
durance elite athletes, including various supplements,
medications, and other ergogenics, may have influenced
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their metabolic profile [49]. Such differences are difficult to
account for as they vary among different sports and ath-
letes and are not usually publicized. Taken all these limita-
tions into account, it is critical to stress that this is a pilot
study that needs further replication and validation as
finding biomarkers from the identified differentiating sig-
nificant compounds still requires optimization of target-
specific analytical methods and validation of these methods
with their reference materials and proficiency tests [50].

Conclusion
The emerging data provide a comprehensive snapshot of
athletes metabolism based on their sports class as well as
small molecule markers of fitness, which requires further
validation. Metabolomics of elite athletes classified according
to their sports class into endurance or power revealed for
the first time changes in metabolites reflecting sex steroid
hormones biosynthesis and oxidative stress substrates
(glutathione metabolism). The analysis confirmed previously
reported changes in the consumption of energy substrates
in glycolysis [51], lipolysis [52, 53], adenine nucleotide catab-
olism [54], and amino acid catabolism [15] in response to
exercise [1, 55, 56]. These metabolic signatures could be uti-
lized as pilot indicators of excessive trainability associated
with elite athletic performance with potential applications in
directing future training programs, preventing potential dis-
orders associated with excessive exercise as well as improv-
ing their overall performance. Changes in these metabolic
signatures may also provide valuable clues for anti-doping
research related to Athlete Biological Passport.
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