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Abstract 

Representative learning design (RLD) in sport is a well-established concept in both theory and practice. The goal 
of RLD is to faithfully replicate competition environments in training settings to benefit improvement in athletic 
performance. There is currently little research that considers how representative an activity needs to be to facilitate 
learning transfer, and how that level of representativeness might fluctuate between activities or sessions, and across 
competitive cycles. Similarly, there is no existing research that specifically considers the elevated workload (in cogni-
tive and physical load) of highly representative training, and the potential impacts of chronic overuse of these highly 
demanding activities. This paper addresses these limitations, making a case for the application of RLD that considers 
the level of representativeness (fidelity) and the demands placed on athletes (load) from both a cognitive and physi-
cal perspective. This paper also suggests several categorisations of training activities that are based on their relative 
representativeness, level of imposed demands, and the intended outcomes of the activity with reference to the per-
ception–action cycle. The two core concepts of fidelity and load are combined for a new approach to representative 
training that allows practitioners to balance the benefits of representative training with the risks of imposing excessive 
load on athletes.

Keywords Representative learning design, Practice design, Sports development, Athlete development, Learning 
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Key Points

• Representative learning design at present does 
not adequately prescribe how representative tasks 
must be to be effective or reflect the broad range of 
demands placed on athletes.

• Practitioners should consider both representative-
ness (fidelity) and level of imposed demands (load) 
when designing training programs for athletes.

• Fidelity and load should be considered from both a 
cognitive and physical perspective.
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Introduction
How can training be designed to best maximize the ben-
efits to the learner? This is a question that practitioners 
have been grappling with for a long time, particularly 
in complex domains with both cognitive and physical 
demands such as sport. While prior work has provided 
many situational answers, the nuance of individual cir-
cumstances likely means that there is no hard and fast 
set of rules that dictates what will be most effective for 
all learners at all times. Different athletes will respond 
differently to the same training stimulus [1, 2], and the 
response of each athlete may vary by day or by session 
due to a range of factors that are out of the practitioner’s 
control [2]. It is therefore futile to assume that any “one 
size fits all” approach exists, and instead general princi-
ples for training must be adapted to the needs of the indi-
vidual or group a practitioner is working with to achieve 
the greatest outcomes. One of these principles of effec-
tive training design is ensuring that training considers 
performance demands and represents the key skills and 
capabilities that need to be developed in order to pro-
gress. The broad line of work dedicated to this idea is 
known as representative learning design (RLD) [3], and 
concerns identifying and understanding how elements of 
the performance environment affect decision making and 
the performance of skills, and using that understanding 
to inform the design of training scenarios and learning 
environments.

The general benefits of representatively designed envi-
ronments are well established [3, 4]. There is evidence to 
suggest that highly representative environments produce 
stronger transfer of skills and knowledge from training 
to competition [5, 6]. It can also be argued that engaging 
in periods of physical training at or above a match-like 
intensity is necessary to ensure that athletes are properly 
prepared for the rigours of competition [7–9]. There is 
less consensus, however, on what elements of tasks and 
environments should be represented and at what stage 
they should be introduced—both throughout the overall 
developmental cycle of learners, and within the macro- 
and micro-cycles of training programs. Research suggests 
that there are varying needs for task and environmental 
representativeness as individuals develop expertise [10] 
and that more variability in practice generally leads to 
greater performance improvement [11], particularly for 
individuals who have progressed beyond the initial stages 
of learning. However, the literature also suggests that 
training—particularly at the elite level—should be more 
often than not be as representative as possible [3, 12]. It 
is likely that there is a place for both high representative-
ness, while also tailoring representativeness to individual 
circumstances, such as developmental level and microcy-
cle, as needed. This theoretical optimal blend of training 

would use a range of different training activities of vary-
ing levels of representativeness within the context of a 
broader training program. To identify this more nuanced 
approach to representative design across the cycles of 
learning and practice, it is important to acknowledge the 
physical and psychological demands that an athlete expe-
riences as a result of varying degrees of representative-
ness in training, and the implications of those demands 
for programming of training and recovery.

It is widely acknowledged that performance in com-
petition across a variety of domains is highly demanding 
and requires recovery [13, 14]; therefore, it is reasonable 
to expect that fully representative training (i.e. simu-
lated match-play in training) also carries a substantial 
cognitive and physical load. We know that performing 
at competition levels of physiological and psychological 
load over extended periods has detrimental effects on the 
outcomes experienced by athletes [14]. Specifically, the 
resulting accumulation of fatigue could lead to injuries 
or burnout through overtraining [15, 16], at which point 
any gains are lost. Injuries and burnout occur frequently 
within athletic populations [17, 18], and as training 
becomes more representative on a more regular basis, 
these may become more prevalent. The same volume of 
training performed with a higher level of representative-
ness is likely to lead to a greater overall impact on the 
athlete in many cases, when compared with less repre-
sentative and more targeted activities. Consequently, the 
level of demand imposed by training that incorporates 
highly representative elements, and the subsequent need 
for recovery and monitoring of cognitive and physical 
capacity should be considered in the broad design of pro-
grams. In order to mitigate the risk of excessive cogni-
tive or physical loading, we propose a new total workload 
approach to applying representative design principles 
that considers both the benefits of representativeness and 
the effect of training demands on the individual. A total 
workload approach allows practitioners to balance the 
benefits and drawbacks of highly representative training 
by taking a holistic view of athlete development and con-
sidering a broader range of workload-inducing activities.

For the remainder of the present article, the term 
load (and workload more generally) is referring to an 
approximation of the total level of burden or demand 
imposed on an athlete or group of athletes over a 
period of training or activity. As a general concept, 
it can be considered as a product of the amount of 
training undertaken and the relative intensity of that 
training (e.g. the cumulative dose of training expo-
sure); however, in specific contexts, it may also refer 
to something that can be calculated based on some 
defined parameters (some examples of which will be 
discussed later in this piece). For example, a high load 



Page 3 of 14Champion et al. Sports Medicine - Open            (2023) 9:38  

(or high workload) may refer to a week, session or 
activity containing either a high volume or high inten-
sity of exercise (or both). Conversely, a low load (or 
low workload) instead refers to a period of relatively 
low volume and/or intensity.

Present Applications of Representative Learning Design
Representative learning design (RLD) aims to ensure that 
key elements of performance environments are reliably 
reproduced in practice settings, to facilitate the devel-
opment of skills and capabilities that readily transfer to 
performance contexts. Practitioners employing RLD con-
cepts aim to ensure a high degree of representativeness 
(fidelity) within the training environments they create [3], 
to make training environments and scenarios feel as close 
to match-like (or performance-like) as possible for the 
athlete. This is true both in terms of the amount of cog-
nitive and physical effort that is required to navigate the 
training scenarios, as well as ensuring that the opportu-
nities for action (affordances) available to learners within 
those environments are both realistic and equivalent to 
what would be experienced in competition. For example, 
a coach may prescribe that the forwards of their football 
(soccer) team spend a period of time practicing shooting 
at goal from an approximate distance of 20 m. The repre-
sentativeness of this task is dependent on a broad range 
of factors (constraints) that a skilled practitioner is able 
to manipulate in order to achieve a desired outcome. For 
this exercise to be highly representative, the coach could 
incorporate an attacking and defending team, as well as a 
goalkeeper, in order to maximise the fidelity of the simu-
lated environment. Conversely, if this session consists of 
repetitions of kicking the ball towards the goal without 
the presence of additional defenders and a goalkeeper, 
the exercise is far less representative of the overall skill 
of shooting for goal in competition. In the latter example, 
while the motor control patterns and amount of physi-
cal effort involved may be similar to a game situation, 
the relative cognitive effort and level of decision-making 
are much lower when compared to the more dynamic 
and less predictable environment presented in the first 
example. The nuance in the differences between these 
two variations of the same exercise, and how they repli-
cate or represent different elements will be discussed in 
greater detail later in this paper. However, they illustrate 
that representativeness can exist on a spectrum; tasks can 
be manipulated to allow for increases or decreases in the 
level of representativeness.

The theory of RLD, while initially applied exclusively to 
clinical psychology problems [19], has evolved to suit a 
broad range of applications since its inception in the mid-
twentieth century. The use of RLD principles in training 
for sport (and skilled performance more broadly) is a 

more modern development [3] and is embedded within 
several sub-fields and theories such as ecological dynam-
ics [4, 20] and meshed control [21, 22], along with prac-
tical methods such as the constraints-based approach to 
learning design [23]. Ecological dynamics broadly focuses 
on the interactions between an individual and the envi-
ronment, and approaches learners as “…complex, neu-
robiological systems in which inherent self-organization 
tendencies support the emergence of adaptive behav-
iours under a range of interacting task and environmen-
tal constraints” [4]. Essentially this means that a learner 
is considered part of a broader ecological system (i.e. 
environment) that is constantly adapting and evolving; 
any changes within that system can influence the behav-
iours of the learner, and vice versa. From this perspective, 
behaviour is considered as something that emerges from 
the interaction between the performer and the envi-
ronment, specifically with the opportunities for action 
afforded by the environment. Using this perspective, it 
is asserted that the cycle of perception and action is an 
expression of cognition, rather than cognition occurring 
as a central and separate representation that is contained 
within an anatomical structure (e.g. the brain).

Alternative to ecological dynamics, the theory of 
meshed control takes many of the same underlying prin-
ciples (e.g. environment influences the behaviour of the 
performer) but asserts that there is some degree of cen-
tral processing of information representing cognition [21, 
22]. Rather than direct interaction with the environment 
and action as cognition without the need for mediating 
representation, as in ecological dynamics, Christensen 
and Sutton [22] suggest that movement behaviours are 
also governed by a higher level of cognition, and that 
there are both automatic and controlled mediating cogni-
tive processes involved in skilled performance (see Chris-
tensen and Sutton [22] for a more detailed explanation).

In practice, the process of action selection within a 
dynamic system (emergent or otherwise) can be illus-
trated by considering the interplay between two oppos-
ing players. If Player A is in possession of the ball, their 
actions when approached by Player B will depend on the 
information they perceive from the environment. Player 
A will consider their position in relation to both team-
mates and opponents, and the movements and perceived 
intention of Player B, when determining their course of 
action (e.g. pass, dribble, or shoot). Similarly, Player B 
will use their perception of the environmental informa-
tion to make their own movements (e.g. tackle, drop to 
intercept, or hold space). Both players dynamically adapt 
their behaviour as they receive more information—as 
other players move, or it starts to rain—and change their 
actions to suit the new environmental constraints. More 
successful performers are generally better able to adapt 
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to a broader range of constraints and exploit a greater 
range of opportunities than their less successful counter-
parts. It is here that the core difference between the two 
theories mentioned above is relevant. From a meshed 
control perspective, this process is inherently driven by 
higher level cognition but may contain some automatic 
elements. For example, the decision about what action 
to take (e.g. dribble or pass) may be cognitive; however, 
the specific motor processes to carry out that action may 
be more automatic. From an ecological dynamics per-
spective, however, the process is instead purely mindless 
with behaviour simply emerging due to the interactions 
between various constraints within the environment—
the actor instinctively performs an action in response to 
the challenge they are faced with. While it is important to 
acknowledge that both views are widely held within sport 
and skilled performance research, the current paper will 
primarily explain ideas using a meshed control perspec-
tive and with an understanding that cognition plays a key 
role in skilled performance.

Ecological Validity in Representative Learning Design
One of the key principles of representative design is 
understanding that our perceptions affect the decisions 
we make and the actions we take. Specifically, the envi-
ronment in which we learn changes both the way we 
learn, and the way that we are able to apply the learned 
behaviour later. The concepts of ecological validity and 
affordances are integral to this understanding. Ecologi-
cal validity describes how similar the input stimuli are 
between practice and performance environments (how 
much it looks and feels like the real thing, e.g. practicing 
soccer skills on a playing field versus in an indoor gym). 
Affordances are the opportunities for action that are 
available to a subject within an environment (e.g. a han-
dle affords grasping, or a defender being out of position 
affords a shot at goal). A more ecologically valid envi-
ronment is one where there is a high degree of fidelity 
between the training stimulus and the intended domain 
of application, both in terms of affordances, and the 
sources of information available. In an environment with 
high ecological validity, the number and range of affor-
dances available to the learner is similar or the same as 
those they face within competition [24].

The idea of attaining high degrees of ecological valid-
ity has inspired work investigating the regularity with 
which constraints combine to influence behaviour in 
both competition and training [12, 25, 26]. Robert-
son et  al. [26] used machine learning to identify com-
mon constraint combinations that affect kicking in 
Australian Football match-play. Similarly, Farrow and 
Robertson [12] mapped the frequency of constraint com-
binations onto the design and evaluation of training (Skill 

Acquisition Periodisation framework—SAP). Whilst 
these approaches are a positive step in the direction of 
making RLD quantifiable at the elite level, the methods 
proposed by many of these types of studies remain inac-
cessible to the majority of practitioners. They require 
either a high degree of knowledge within the field of 
ecological dynamics, or access to highly sophisticated 
technology and programs. In addition, the use of sophis-
ticated methods, such as data analytics and machine 
learning to make training representative at all times, does 
not consider the elevated levels of cognitive and physi-
cal load experienced by athletes during competition-like 
training. Other approaches to applying these concepts in 
practice such as the PoST (Periodisation of Skill Training) 
framework are more accessible [27]; however, they do 
not wholly consider or account for the relative demands 
imposed on the individual in the process.

It is clear there is a need for a conscious effort to deter-
mine how much representativeness is needed at different 
stages of development both within and across competi-
tive seasons, to maximize the learning potential while 
considering both cognitive and physical workload. While 
there is clear theoretical evidence in favour of highly rep-
resentative practice for some part of the whole training 
program, to our knowledge there has not been any inves-
tigation of how much representativeness is needed out-
side of these full-simulation activities (such as in strength 
and conditioning training, or similar). There also does 
not appear to be much consideration of the timing of 
highly representative training both within typical com-
petitive cycles, and throughout the broader pathway of 
skill development over a career or lifetime. In addition, 
there has not been any meaningful attempt to quantify 
the level of overall cognitive demand placed on athletes 
by training that is highly representative in nature, or the 
cognitive workload that they experience in currently 
unmeasured off-field aspects of their development (e.g. 
team strategy meetings, preparation for public/media 
appearances). These gaps in current research and prac-
tice lead to the key questions addressed in this paper: 
How can we ensure optimal learning and performance 
for athletes using principles of representative learn-
ing design? How can we do so over both the short- and 
long-term within a competition cycle, while considering 
cognitive and physical workload? What are the broader 
implications of considering cognitive and physical work-
load within representative design for even longer-term 
athletic and skilled development?

Demands of Highly Representative Training
Understanding, quantifying, and manipulating the level 
of both cognitive and physical effort in various degrees 
of representative training has not yet been investigated 
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in any substantial way. The first step in this investiga-
tion is understanding the source of the demands experi-
enced by athletes, by analysing the underlying perception 
and action process. We must also identify what specific 
qualities we are aiming to improve through training (with 
respect to the perception and action process), with the 
ultimate goal of understanding how different types of 
training may benefit both individuals and groups of ath-
letes at different stages.

The fundamental basis for Brunswik’s original repre-
sentative design theory is explained using his Lens model 
of perception, which describes how he believed humans 
perceive the world around them [19]. While the Lens 
model has evolved over time to incorporate other theo-
ries [28, 29], it is still largely based on the assumption 
that humans, in most cases, make probabilistic inferences 
based on the information they are presented with. That 
is, they view their environment through a metaphorical 
lens that transforms raw acoustic and visual information 
into something that has relevance to their situation [30]. 
Humans then utilize that probabilistic interpretation of 
their environment to identify affordances, make deci-
sions, and carry out actions. Those decisions and actions 
then influence both the state of the environment around 
them, and the way in which they perceive it, creating 
what is known as the perception and action cycle [31].

This cycle of simultaneous perception and action is a 
continuous process that persists as a basic human func-
tion not just in sport but across most human endeavours. 
In our day-to-day life, we are constantly perceiving our 
surroundings, making decisions, and acting based on our 
perception of those surroundings, and perceiving how 
those actions in turn affect or change the environment 
around us. The fundamental components of perception–
action coupling are the uptake of sensory information, 
the utilization of that information to make decisions, the 
selection of motor solutions1 to address situational needs, 
and then enacting those motor solutions. This basic pro-
cess in day-to-day activities is the same across a broad 
spectrum of situations. When performing more com-
plex and demanding tasks, however, the time limitations, 
magnitude, and scale of the task for both perception and 
action are much greater, while the margin for error is far 
smaller (such as when playing a team sport or driving a 
manual car on a highway). More demanding settings typ-
ically contain more sources of information, shorter time 

constraints on processing and utilizing that information, 
a wider range of possible movement solutions but with 
more specific constraints, and a greater element of risk 
of injury or task failure when those movements do not go 
as planned.

The purpose of training is to increase our capacity to 
carry out each of the sub-processes that form the over-
all perception and action cycle. That can be by improv-
ing our ability to process appropriate information from 
our surroundings, our ability to make sense of that 
information to inform decisions, or our ability to recog-
nize affordances and capacity to exploit the movement 
opportunities available. Representative learning design 
can be the vehicle that drives this process of developing 
perceptual and motor capacity, in that the application 
of those increased capacities to improving performance 
is greatly enhanced by increased similarity between the 
training and performance environments [5]. However, 
that does not necessarily mean that training and compe-
tition environments should always be identical. There is 
evidence to suggest that the transfer of skills or learned 
behaviours between contexts occurs along a continuum, 
with greater transfer facilitated by more similar contexts, 
and less transfer for contexts that differ substantially [32]. 
It follows that more representative training environments 
should facilitate greater transfer of skills and learning; 
however, that does not mean that less representative 
environments have little or no benefit to an athlete’s per-
formance. Instead, these less performance-like environ-
ments (e.g. training in the gym, or using virtual reality), 
while less representative and consequently less efficient 
for skill transfer, allow for the targeted manipulation 
of other performance variables (e.g. strength, speed) 
and mitigation of specific limitations (e.g. soreness and 
fatigue) to achieve different outcomes. There is evidence 
to show that varying levels of representativeness in train-
ing change the behaviours observed within otherwise 
similar activities [33]. Thus, having flexibility in the level 
of representativeness as needed allows for consideration 
of the specific goals of training, as well as environmen-
tal and individual constraints that a practitioner may not 
always be able to control, such as weather, injuries, or 
fatigue.

In a competitive sporting scenario, the amount of per-
ceptual information available to an athlete is immense 
[34]. This is especially true in team sport, but also applies 
in any sport where athletes are required to respond to a 
diverse and dynamic environment. Moreover, the degree 
of uncertainty involved in tracking and predicting move-
ments and actions of other objects and people within the 
wider game system is incredibly challenging. The uptake 
and processing of this information therefore requires 
a substantial number of cognitive resources from the 

1 It is important to note here that the process of selecting an action can be 
either conscious or unconscious (instinctive) and may not always involve 
explicit decisions. When this process occurs instinctively, the resulting deci-
sion or action is more appropriately described as emergent behaviour. The 
term “selection” in this context throughout this paper is used to refer to both 
conscious and emergent processes, rather than exclusively one or the other.
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athlete in order to continuously calibrate and re-calibrate 
their perception of the environment as it changes over 
time. Additionally, one must also consider the cognitive 
effort that is involved in broadly governing the complex 
movement of the individual as they run, jump, and kick 
in response to the demands of the task or environment. It 
has previously been demonstrated that physical demands 
fluctuate over the course of a competitive team sport 
season based on a number of factors including (but not 
limited to) the level of representativeness that is being 
attained within activities [35]. The cognitive demands 
imposed on the individual arise from the increased 
involvement of higher level cognition in making deci-
sions and selecting skills under more restrictive and chal-
lenging constraints [21]. Whilst many specific actions 
may be carried out autonomously, the degree of effort in 
perception, decision making, and selection of said actions 
increase as the demands of the task or environment 
become more complex and less stable—characteristics 
that are often typical of more representative activities. 
Given the above, it stands to reason that levels of cog-
nitive demand would also fluctuate heavily in response 
to variability in training and performance phases, par-
ticularly in periods where more representative activities 
are utilized more frequently. Herein lies the crux of the 
issue. As we strive to make training and learning tasks 
more representative of the performance environment in 
terms of how it constrains and facilitates the emergence 
of behaviours, we are also increasing the cognitive and 
physical demands that athletes experience on a regular 
basis. Cognitive fatigue is known to influence perfor-
mance in competitive settings [13]. Training at or above 
competitive levels of demand may lead to an accumula-
tion of both cognitive and physical fatigue, which is not 

currently considered by any existing models of represent-
ative learning design. If the vast scope of previous work 
that details the importance of adequately monitoring and 
managing general (physical) load is any indication [14], 
then it is likely that neglecting to also consider the cogni-
tive equivalent may carry equally dire consequences [16, 
36].

New Considerations for Measuring the Demands 
of Representative Training
We have established the need for a method of quan-
tifying and planning training with respect to both the 
benefits to be gained from highly representative design, 
and the need for a strategic approach to avoid the nega-
tive effects of excessive load. To address this balance, 
any prospective method must consider both the fidel-
ity of training (how realistic it feels to the athlete), and 
the load experienced, from both a cognitive/psycho-
logical and a physical perspective. The combination of 
these perspectives results in four distinct characteris-
tics that quantify training (Table 1). This method must 
also account for how the interaction between these 
four characteristics results in different types of training 
across typically independent departments and respon-
sibilities within a sport system (e.g. strength and con-
ditioning versus technique training) and whether those 
types of training address the fundamental goals of 
improving aspects of the perception and action process 
(Table 2).

These four characteristics (physical and cognitive 
fidelity, and physical and cognitive demand) (Table1), 
considered together with training goals within the per-
ception–action cycle (Table 2), can be used to both qual-
ify and quantify different types of training that already 

Table 1 The four characteristics used to assess training demands

Characteristic Description

Physical Fidelity How close to game-like a drill or training session is, physically

Cognitive Fidelity How close to game-like a drill or training session is, cognitively

Physical Demand The total physical workload across a drill, session, or cycle of a training plan

Cognitive Demand The total cognitive workload across a drill, session, or cycle of a training plan

Table 2 Intended training goals in reference to the perception action cycle

Perception–action sub-process Description

Uptake of Information The capacity to take in (perceive) a range of sensory information

Utilization of Information The capacity to process and utilize sensory information

Selection of Motor Solutions The capacity to identify affordances/possible actions

Execution of Motor Solutions The capacity to successfully carry out actions
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exist (these different types of training will be discussed in 
detail later). Using these descriptive characteristics helps 
practitioners evaluate the representativeness of drills or 
training scenarios while also acknowledging the impact 
that representativeness has on the individual workload of 
athletes. Using these categories also allows practitioners 
to plan for sessions of varying levels of representativeness 
in a targeted manner that provides athletes with adequate 
time to recover from acute cognitive and/or physical 
load. This variation in planned activities is possible not 
just within a session, but also a longer timescale—simi-
lar to how physical load is managed now—with planned 
peaks and troughs in workload that is tapered relative to 
an athlete or team’s needs at various stages within their 
training and competitive cycle. For example, within a 
weekly plan, a team may aim to have a day with a primar-
ily physical focus, a day with a primarily cognitive focus, 
and other days with roughly comparable levels of cogni-
tive and physical focus (Fig. 1).

Within the hypothetical single week micro-cycle 
detailed in Fig. 1, we can see that each day has a differ-
ent level of total workload considering cognitive and 

physical sources. Each day also has a targeted level of 
fidelity across both physical and cognitive domains. The 
interactions between these characteristics dictate what 
types of training may be appropriate for sessions held 
on each day. For example, day 3 of the hypothetical week 
plan has a large physical load, a low cognitive load, and 
low levels of both physical and cognitive fidelity. These 
characteristics facilitate some type of gym-based train-
ing or equivalent that is not particularly representative of 
competitive scenarios but does accumulate a substantial 
level of physical load. In contrast, day 4 has a higher level 
of cognitive load, lower physical load (to enable recov-
ery from the previous day), a moderate level of cognitive 
fidelity and a lower level of physical fidelity. A day such as 
this is well suited to doing primarily off-feet tasks such as 
video-based training or reviewing footage from previous 
matches in preparation for upcoming competition peri-
ods. There is evidence that video-based interventions and 
training in tailored virtual environments (e.g. virtual real-
ity or other video-based interventions) may be of benefit 
when performed with concurrent physical training (in a 
similar fashion to mental practice), in that the virtual and 
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video-based practice augments the physical practice and 
is ultimately more effective than physical practice alone 
[37, 38].

The other day in this hypothetical plan with a substan-
tial disparity between cognitive and physical load and 
fidelity is day 7. This day is characterised by low levels of 
cognitive load, moderate to high levels of physical load, 
and low and moderate levels of cognitive and physical 
fidelity, respectively. Within a competitive cycle, a session 
with these characteristics may be a day in which some 
sort of active recovery type work can be conducted, per-
haps after a competitive game or full match simulation 
the previous day. The fluctuations in both cognitive and 
physical load that can be seen in this hypothetical plan 
represent an application of tapering techniques [39] and 
can be tailored to suit a broad range of needs or competi-
tive settings.

The key intricacies of using this differentiated repre-
sentativeness method to design and plan training are 
revealed in the remaining days of the hypothetical plan. 
Days 1, 2, 5 and 6 have similar levels of both cognitive 
and physical load, and interchanging levels of fidelity 
between moderate and high for both cognitive and physi-
cal domains. These days would be mostly comprised of 
more highly representative training and occur at a point 
within the week where there is time for adequate recov-
ery of cognitive and physical capacities. However, there 
is the opportunity for even greater specification here, 
in that these days can further target the development 
of specific aspects of the perception and action cycle by 

using different types of training detailed in the following 
section.

Relationships Between Cognitive and Physical Load 
and Fidelity
In the hypothetical training plan in Fig.  1, the relation-
ships between cognitive and physical load and fidelity are 
complex and have wide ranging implications for the over-
all impact of training. When descriptive assessments of 
these qualities are combined, they contribute to the con-
cept of a total workload. That is, the combination of cog-
nitive/physical load and cognitive/physical fidelity can 
have implications for the total workload of an activity or 
session. For example, an exercise that is highly physically 
demanding, but only moderately cognitively demanding, 
may have an equivalent overall impact on the athlete in 
workload terms as an exercise that is only moderately 
physically demanding, but highly cognitively demanding. 
Similarly, an exercise that is highly representative of com-
petitive scenarios in a physical sense may not be as repre-
sentative cognitively, but overall may be as representative 
on average as an exercise where those characteristics are 
flipped.

These relationships between cognitive and physical 
load and fidelity can be represented by adapting a model 
known as a Greimas Square (Fig.  2) [40], which allows 
for a visualisation of how different settings of two differ-
ent scales interact. The central components of a Greimas 
Square are two pseudo-axes representing variables that 
are different but related. A Greimas Square can be used 

High 
Physical 
Fidelity

Low 
Cognitive 
Fidelity

Low 
Physical 
Fidelity

High 
Cognitive 
Fidelity

Contradictory
(Cannot both be true)

Contrary 
(Both true, but opposite)

Implied
(One often implies the 
other)

Fig. 2 Greimas Square representation of relationships between cognitive and physical fidelity
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to describe single events, as well as two pairs of lines to 
indicate contrary and linked settings. The end result is 
three pairs of variables that are either contradictory, con-
trary, or often implying the other (Table 3). When cogni-
tive and physical load and fidelity are mapped in this way, 
it adds context to the second key concept of this paper 
which is discussed in the next section: the overlapping 
qualities of different training categories to consider in a 
total workload approach to representative design.

Five Types of Training Within Total Workload 
Representative Design
The second key concept of the total workload approach 
to representative design is the identification of five dis-
tinct training categories that are defined by the level of 
cognitive and physical demands placed on athletes, and 
the specific perception and action processes targeted 
(Table  4). It is important to note that presenting these 
categories is not advocating for the complete decoupling 
of physical and cognitive demands or training any aspects 
of performance in complete isolation. Rather, these cat-
egories indicate the priorities and goals for a given type 
of session, with respect to the fidelity requirements and 
necessary load to achieve those goals. For example, where 
high physical fidelity is the priority, the tasks used may 
still require some degree of cognitive effort. Similarly, 
tasks focused on high cognitive fidelity may still require 
high physical effort.

While the training categories presented in Table 4 are 
all considered as separate types of activities, it is impor-
tant to note that there is a great deal of cross-over in 
qualities that describe each of them. Two activities may 
have identical load properties, but differing fidelity prop-
erties, which allows a practitioner to make an easy dis-
tinction between them. However, it is also possible that 
activities might have overall very similar properties 
across all qualities, at which point the intended goals 
of the activity become more relevant. When these cat-
egories of training (Table 4) are incorporated into figures 
that illustrate the load and fidelity properties of various 
types of training, we can more easily visualise the areas 
of overlap between these different categories and begin 

to understand the added importance of considering the 
training aims/goals in combination with monitoring the 
execution. This is illustrated by Figs. 3 and 4, which show 
where each training category would fit when considering 
physical and cognitive load (Fig. 3) and fidelity (Fig. 4) as 
perpendicular axes on a pseudo x–y plot.

In Fig. 3, relatively low physical and cognitive demand 
values could be used to describe as many as three over-
lapping categories of training (MSA, SD and Recovery). 
Similarly, a moderate-to-high cognitive demand, and a 
low-to-moderate physical demand might describe either 
a FC-c or SD activity classification. When consider-
ing both fidelity and level of imposed demand, the only 
activity that one would expect to exhibit a distinct pro-
file would be the GI category, in that both cognitive and 
physical demand and fidelity characteristics could be 
described as moderate-to-high. Where imposed demands 
have significant crossover between training categories, 
cognitive and physical fidelity are much more distinct 
for the majority of categories. High physical fidelity and 
low cognitive fidelity would most likely indicate a MSA 
activity, whilst the inverse (low physical, high cognitive) 
would be indicative of a SD activity. The limited crosso-
ver within this series of qualities is seen in the bottom left 
quadrant of Fig. 4, where activities with low-to-moderate 
cognitive and physical fidelity could be described as any 
of FC-c, FC-p or recovery.

The differences between each of these categories of 
training as illustrated in Figs. 3 and 4 are further clarified 
by considering the potential types of activities that may 
be considered within each category. For example, Fun-
damental Capacity (Cognitive), Software Development, 
and to some extent Game Innovation training types all 
may have similar absolute levels of cognitive demand as 
illustrated in both the table and figure (Table  4, Fig.  3), 
but where they differ is in either the goals or fidelity of 
the session (Fig. 4). In this example, a three-dimensional 
multiple-object tracking (3D-MOT) training activity in 
virtual reality (FC-c) may be considered as highly cogni-
tively demanding, as may an on field small-sided game 
(SSG) carried out at walking pace or under specific con-
straints (e.g. limit on allowed behaviours) (SD), or even 

Table 3 The relationships detailed by mapping cognitive and physical fidelity onto a Greimas square

Relationship 
between 
characteristics

Logical description Example pairing

Contradictory Lie at opposite ends of the same scale and cannot both be true at the same 
time

High cognitive fidelity and low cognitive fidelity
High physical fidelity and low physical fidelity

Contrary Lie at opposite ends of different scales but can both be true at the same time High cognitive fidelity and low physical fidelity
High physical fidelity and low cognitive fidelity

Implied Lie at the same end of different scales and there is a general implication that 
when one is true, the other is also likely to be true

High cognitive fidelity and high physical fidelity
Low cognitive fidelity and low physical fidelity



Page 10 of 14Champion et al. Sports Medicine - Open            (2023) 9:38 

a simulated match play activity (GI). However, these are 
clearly not the same activity, and it is the additional infor-
mation about the fidelity of these activities that gives 
greater clarity about the type of training they are (such 
as whether there is a substantial physical element (SD & 
GI), and/or whether the aim is to develop capacity to per-
form or if performance itself is the end goal).

The 3D-MOT (FC-c) example is a somewhat low fidel-
ity task in that it has little in common with a competi-
tive performance in most sports; however, the goal of the 
training is to increase the capacity to carry out cognitive 
activity, rather than focussing on the direct application to 
performance settings. This idea is similar to how resist-
ance training in a gym improves the capacity for physi-
cal action but does not typically directly transfer well to 
skilled performance without additional domain-specific 
adaptation [41] (see Kalén et al. [42] for a meta-analysis 

of the importance of domain-specific and domain-gen-
eral cognitive information in skilled performance). The 
Software Development example of a SSG at walking pace 
has somewhat greater cognitive fidelity in relative terms, 
but still does not overly resemble a competitive setting 
given that it is a constrained variation on match play. 
This could be seen as an opportunity to develop domain-
specific capacity of cognitive work (i.e. performing skills/
making decisions in the correct domain). A walking 
pace SSG could also be used to provide a reprieve from 
more highly demanding physical tasks, while still provid-
ing some specific cognitive stimulation. In a sense, the 
walking pace SSG builds upon the fundamental capacity 
work, as it provides an opportunity to apply improved 
capacity to track multiple objects (for example), in a 
more specific setting (theoretically increasing transfer). 
Finally, the GI example of a full match simulation activity 

Table 4 Characteristics of the five proposed training categories

a ”Selection” refers to both deliberate and instinctive actions (see Footnote 1)

Training category Physical fidelity Cognitive fidelity Physical demand Cognitive demand General 
description of aims

Specific perception–
action goals

Fundamental Cogni-
tive Capacity (FC-c)

Low to Moderate Low to Moderate Low to Moderate Moderate to High Increase capacity to 
take-in and process 
sensory information

Uptake of Information

Fundamental Physi-
cal Capacity (FC-p)

Low to Moderate Low to Moderate Moderate to High Low to Moderate Increase capacity 
to carry out actions 
through improved 
flexibility, strength, 
speed, etc.

Execution of Motor 
Solutions

Motor Skill Arsenal 
(MSA)

Moderate to High Low to Moderate Low to High Low to Moderate Develop the range 
of actions available 
to be applied in 
various scenarios, 
without specific 
focus on cognitive 
elements

Selection of Motor 
 Solutionsa

Execution of Motor 
Solutions

Software Develop-
ment (SD)

Low to Moderate Moderate to High Low to Moderate Moderate to High Develop the ability 
to make decisions, 
but with minimal 
focus on carry-
ing out actions at 
competitive levels of 
performance

Uptake of Information
Utilization of Informa-
tion

Game Innovation 
(GI)

Moderate to High Moderate to High Moderate to High Moderate to High Allow exploration 
of the system of a 
competition-like 
environment, iden-
tifying affordances 
and executing on 
them
(Consolidating work 
from MSA and SD 
categories)

Uptake of Information
Utilization of Informa-
tion
Selection of Motor 
 Solutionsa

Execution of Motor 
Solutions

Recovery Low to Moderate Low to Moderate Low to Moderate Low to Moderate Regeneration/
restoration of cogni-
tive and physical 
resources and 
capacities

N/A
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is a task that theoretically approaches maximum fidel-
ity. The intentions of the session are to provide an even 
more specific environment in which to apply improved 
capacity, while also consolidating the equivalent physi-
cal capacities improved throughout a training program. 
GI activities are the component of training that brings 
all other activities together. The stage of a season, or the 
constraints that an individual is facing (such as fatigue, 
injury, or even overall skill level) dictate how often GI 
activities should be performed, and what proportion of 
training they should make up. GI-type activities are typi-
cally the key focus of work within representative design 
and ecological dynamics; however, there is little research 
into when and how they should be used. The total work-
load perspective provides the key considerations for such 
an examination.

The training categories presented in Table  4, along 
with the monitoring and periodization of physical and 
cognitive load and fidelity, demonstrate a new approach 
to applying RLD that can encapsulate the development 
of an athlete or team over the full span of their play-
ing career. This approach can be used both in evaluat-
ing existing training practices and in planning for future 
programs. However, we must also acknowledge that this 

method does not explicitly provide all of the answers that 
practitioners may require in order to incorporate the 
principles into their practice. While the intention of this 
total workload approach is distinctly different from some 
of the existing approaches (namely SAP and PoST), there 
is potential for several of these approaches to be used in 
conjunction given the appropriate resources. Despite the 
limitations mentioned previously, the SAP framework 
proposed by Farrow and Robertson provides a robust 
mechanism for measuring fidelity of performance [12]. 
Similarly, the PoST framework provides a strong founda-
tion for planned progression of skill development over 
time and as such could also be utilized [27]. In this exam-
ple then, one could consider taking the total workload 
approach presented in this paper as a way of monitoring 
the use of both of these alternatives. The PoST frame-
work could be used to set overall goals and milestones, 
the SAP framework in part to quantify fidelity of training, 
and the holistic workload approach to monitor progres-
sion and workload over time.

There are many potential ways to quantify physical load 
in practice, as evidenced by the great diversity of met-
rics used in high-performance sport such as high veloc-
ity running measurements, algorithmically determined 

Fig. 3 Load properties of the various training categories presented in Table 4. Dashed borders indicate that a category fills the quadrant it is in but 
has been resized for readability
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load (such as those calculated by many commercial GPS 
units), sessional ratings of perceived exertion and others 
[35, 43, 44]. Similarly, there are several options  for defin-
ing physical fidelity, such as matching either physical 
output [45] or the frequency of constraint combinations 
[12], or even subjective measurement of how game-like a 
scenario looks and feels to an athlete [46]. The variety of 
possible measurement highlights the potential flexibility 
that this total workload approach provides. Programs at 
the elite level that have access to advanced data analyt-
ics methods and a wide variety of performance metrics 
may be able to incorporate a wide scope of informa-
tion into the adoption of this approach [35]. Conversely, 
those at the sub-elite level who may have less capacity to 
produce and use similar information may be able to use 
comparatively simpler measurements (e.g. sessional RPE/
subjective fidelity ratings) but still achieve beneficial out-
comes. Similarly, there are challenges in determining the 
most appropriate method to measure cognitive load and 
fidelity.

Monitoring cognitive workload in the manner pro-
posed in this paper is a novel concept, as is fidelity, and 
as such there are minimal available resources to draw 
upon when deciding how to quantify it [47, 48]. Whilst 

there are several subjective rating tools already in use for 
determining the cognitive workload of tasks in a variety 
of settings [49], there are no clear purpose-built subjec-
tive scales for measuring cognitive workload in sport-
ing environments. It should be noted that this is not a 
problem unique to sport, with similar issues recognized 
in other fields involving skilled performance such as per-
forming surgery [50]. Similarly, objective measures of 
cognitive workload are generally unsuited to the highly 
dynamic environments presented in sporting scenarios. 
While tools and techniques such as EEG (electroenceph-
alography), MEG (magnetoencephalography) and  pupil-
lometry are all able to provide objective approximations 
of cognitive workload [51], they also typically require the 
use of equipment that impairs or limits the ranges of pos-
sible movements by the person being monitored. These 
challenges are not insurmountable; however, it is impor-
tant to make the case for measuring cognitive workload 
in this context, in order to guide further development of 
approaches and technologies to do so. As such, further 
research within this space is needed to investigate pos-
sible measures of both cognitive fidelity and load with 
respect to planning and monitoring development.

Fig. 4 Fidelity properties of the various training categories presented in Table 4. Dashed borders indicate that a category fills the quadrant it is in 
but has been resized for readability
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Conclusion
As our understanding of the factors involved in improv-
ing performance grows, we must consider the broad 
range of demands placed on athletes. As practitioners 
strive to regularly make training more closely representa-
tive of competitive demands, it is critical to acknowl-
edge the variety of demands and the impact they have 
on the individual. To that end, this paper presents a new 
approach for practitioners to consider when planning and 
monitoring representatively designed training. The core 
principle of this total workload approach is consideration 
of both the fidelity of training and the imposed demand, 
from both cognitive and physical sources. Specifically, 
this approach asks practitioners to consider training 
activities with respect to the individual adaptations they 
aim to produce, and to carefully balance the representa-
tiveness of training with the need for recovery. This pres-
entation of the total workload approach also defines five 
categories of training (and their typical characteristics) 
that may aid practitioners in planning.

The approach outlined in this paper does not explicitly 
dictate how a practitioner may apply RLD principles, or 
how they should quantify the four main characteristics of 
training (cognitive/physical load and fidelity). However, 
it does act as a platform for future research and future 
practice, with the intention to bring in to focus the rela-
tive demands of various activities that athletes take part 
in throughout their careers. Specifically, the next key 
steps are to investigate possible practical applications 
of this approach and to explore methods of quantifying 
the demands of representative training across a range 
of performance domains. This sort of investigation will 
facilitate deeper analysis of the proposed total workload 
approach, as well as suggest potential areas in which 
coaches and practitioners can enhance their current 
planning strategies.

Acknowledgements
The authors wish to acknowledge members of the Skilled Performance Lab 
Group at La Trobe University for feedback given on early drafts and figures.

Author contributions
LC formulated the initial concept. LC, KM and CM developed the proposed 
approach. All authors were involved in the drafting and revisions of the manu-
script. All authors read and approved the final manuscript.

Funding
This research was supported by an Australian Government Research Training 
Program (RTP) Scholarship.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Luke Champion, Kane Middleton and Clare MacMahon declare that they have 
no competing interests.

Received: 10 March 2022   Accepted: 26 April 2023

References
 1. Hautala AJ, Kiviniemi AM, Mäkikallio TH, et al. Individual differences in 

the responses to endurance and resistance training. Eur J Appl Physiol. 
2006;96:535–42. https:// doi. org/ 10. 1007/ s00421- 005- 0116-2.

 2. Mann TN, Lamberts RP, Lambert MI. High responders and low respond-
ers: factors associated with individual variation in response to standard-
ized training. Sports Med. 2014;44:1113–24. https:// doi. org/ 10. 1007/ 
s40279- 014- 0197-3.

 3. Pinder RA, Davids KW, Renshaw I, et al. Representative learning design 
and functionality of research and practice in sport. J Sport Exerc Psychol. 
2011;33:146–55.

 4. Davids K, Araújo D, Vilar L, et al. An ecological dynamics approach to skill 
acquisition: implications for development of talent in sport. Talent Dev 
Excell. 2013;5:21–34.

 5. Müller S, Rosalie SM. Transfer of expert visual-perceptual-motor skill in 
sport. In: Anticipation and decision making in sport. Routledge; 2019: 
375–393.

 6. Seifert L, Wattebled L, Orth D, et al. Skill transfer specificity shapes percep-
tion and action under varying environmental constraints. Hum Mov Sci. 
2016;48:132–41. https:// doi. org/ 10. 1016/j. humov. 2016. 05. 004.

 7. Bangsbo J, Mohr M, Krustrup P. Physical and metabolic demands 
of training and match-play in the elite football player. J Sports Sci. 
2006;24:665–74.

 8. Malone S, Roe M, Doran DA, et al. High chronic training loads and expo-
sure to bouts of maximal velocity running reduce injury risk in elite Gaelic 
football. J Sci Med Sport. 2017;20:250–4.

 9. Iaia FM, Ermanno R, Bangsbo J. High-intensity training in football. Int J 
Sports Physiol Perform. 2009;4:291–306.

 10. Starkes JL, Cullen JD, MacMahon C. A life-span model of the acquisition 
and retention of expert perceptual-motor performance. In: Skill acquisi-
tion in sport: Research, theory and practice. 2004: 259–281.

 11. Magill RA. Motor Learning and Control: Concepts and Applications. 9th 
ed. New York: McGraw-Hill; 2011.

 12. Farrow D, Robertson S. Development of a skill acquisition periodisation 
framework for high-performance sport. Sports Med. 2017;47:1043–54.

 13. Smith MR, Thompson C, Marcora S, et al. Mental fatigue and soccer: 
current knowledge and future directions. Sports Med. 2018;48:1525–32. 
https:// doi. org/ 10. 1007/ s40279- 018- 0908-2.

 14. Halson SL. Monitoring training load to understand fatigue in athletes. 
Sports Med. 2014;44:139–47.

 15. Goodger K, Gorely T, Lavallee D, et al. Burnout in sport: a systematic 
review. Sport Psychol. 2007;21:127–51.

 16. Carfagno DG, Hendrix JC. Overtraining syndrome in the athlete: current 
clinical practice. Curr Sports Med Rep. 2014;13:45–51. https:// doi. org/ 10. 
1249/ jsr. 00000 00000 000027.

 17. Sprouse B, Alty J, Kemp S, et al. The football association injury and illness 
surveillance study: the incidence, burden and severity of injuries and 
illness in men’s and women’s international football. Sports Med. 2020. 
https:// doi. org/ 10. 1007/ s40279- 020- 01411-8.

 18. Saw R, Finch CF, Samra D, et al. Injuries in Australian rules football: an 
overview of injury rates, patterns, and mechanisms across all levels of 
play. Sports Health. 2018;10:208–16. https:// doi. org/ 10. 1177/ 19417 38117 
726070.

 19. Brunswik E. Representative design and probabilistic theory in a functional 
psychology. Psychol Rev. 1955;62:193.

 20. Woods CT, McKeown I, Rothwell M, et al. Sport practitioners as sport 
ecology designers: how ecological dynamics has progressively changed 

https://doi.org/10.1007/s00421-005-0116-2
https://doi.org/10.1007/s40279-014-0197-3
https://doi.org/10.1007/s40279-014-0197-3
https://doi.org/10.1016/j.humov.2016.05.004
https://doi.org/10.1007/s40279-018-0908-2
https://doi.org/10.1249/jsr.0000000000000027
https://doi.org/10.1249/jsr.0000000000000027
https://doi.org/10.1007/s40279-020-01411-8
https://doi.org/10.1177/1941738117726070
https://doi.org/10.1177/1941738117726070


Page 14 of 14Champion et al. Sports Medicine - Open            (2023) 9:38 

perceptions of skill “acquisition” in the sporting habitat. Front Psychol. 
2020. https:// doi. org/ 10. 3389/ fpsyg. 2020. 00654.

 21. Christensen W, Sutton J, McIlwain DJ. Cognition in skilled action: meshed 
control and the varieties of skill experience. Mind Lang. 2016;31:37–66.

 22. Christensen W, Sutton J. Mesh: cognition, body and environment in 
skilled action. Handbook of embodied cognition and sport psychology 
2018; 157.

 23. Renshaw I, Chow J-Y. A constraint-led approach to sport and physical 
education pedagogy. Phys Educ Sport Pedagog. 2019;24:103–16.

 24. Araújo D, Davids K, Passos P. Ecological validity, representative design, and 
correspondence between experimental task constraints and behavioral 
setting: comment on. Ecol Psychol. 2007;19:69–78. https:// doi. org/ 10. 
1080/ 10407 41070 93369 51.

 25. Woods CT, McKeown I, Shuttleworth RJ, et al. Training programme 
designs in professional team sport: an ecological dynamics exemplar. 
Hum Mov Sci. 2019;66:318–26.

 26. Robertson S, Spencer B, Back N, et al. A rule induction framework for the 
determination of representative learning design in skilled performance. J 
Sports Sci. 2019;37:1280–5. https:// doi. org/ 10. 1080/ 02640 414. 2018. 15559 
05.

 27. Otte FW, Millar S-K, Klatt S. Skill training periodization in “specialist” sports 
coaching—an introduction of the “PoST” framework for skill develop-
ment. Front Sports Act Living 2019; 61.

 28. Kirlik A. Requirements for psychological models to support design: 
toward ecological task analysis. Glob Pers Ecol Hum-Mach Syst. 
1995;1:68–120.

 29. Vicente KJ. Beyond the lens model and direct perception: toward a 
broader ecological psychology. Ecol Psychol. 2003;15:241–67.

 30. Stoffregen TA, Bardy BG, Smart L et al. On the nature and evaluation of 
fidelity in virtual environments. Virtual and adaptive environments: Appli-
cations, implications, and human performance issues 2003; 111–128.

 31. Turvey MT. Impredicativity, dynamics, and the perception-action 
divide. In: Jirsa VK, Kelso JAS, editors. Coordination Dynamics: Issues 
and Trends. Berlin: Springer; 2004. p. 1–20. https:// doi. org/ 10. 1007/ 
978-3- 540- 39676-5_1.

 32. Barnett SM, Ceci SJ. When and where do we apply what we learn?: A 
taxonomy for far transfer. Psychol Bull. 2002;128:612.

 33. Maloney MA, Renshaw I, Headrick J, et al. Taekwondo fighting in training 
does not simulate the affective and cognitive demands of competition: 
implications for behavior and transfer. Front Psychol. 2018. https:// doi. 
org/ 10. 3389/ fpsyg. 2018. 00025.

 34. McGarry T, Anderson DI, Wallace SA, et al. Sport competition as a dynami-
cal self-organizing system. J Sports Sci. 2002;20:771–81.

 35. Brooks ER, Benson AC, Fox AS, et al. Physical movement demands of train-
ing and matches across a full competition cycle in elite netball. Appl Sci. 
2020;10:7689.

 36. McMorris T, Barwood M, Hale BJ, et al. Cognitive fatigue effects on physi-
cal performance: a systematic review and meta-analysis. Physiol Behav. 
2018;188:103–7. https:// doi. org/ 10. 1016/j. physb eh. 2018. 01. 029.

 37. Simonsmeier BA, Androniea M, Buecker S et al. The effects of imagery 
interventions in sports: a meta-analysis. Int Rev Sport Exerc Psychol 2020; 
1–22.

 38. Gray R. Transfer of training from virtual to real baseball batting. Front 
Psychol. 2017. https:// doi. org/ 10. 3389/ fpsyg. 2017. 02183.

 39. Le Meur Y, Hausswirth C, Mujika I. Tapering for competition: a review. Sci 
Sports. 2012;27:77–87. https:// doi. org/ 10. 1016/j. scispo. 2011. 06. 013.

 40. Greimas AJ, Rastier F. The interaction of semiotic constraints. Yale French 
Studies 1968; 86–105. https:// doi. org/ 10. 2307/ 29296 67

 41. Breed RV, Young WB. The effect of a resistance training programme 
on the grab, track and swing starts in swimming. J Sports Sci. 
2003;21:213–20.

 42. Kalén A, Bisagno E, Musculus L, et al. The role of domain-specific and 
domain-general cognitive functions and skills in sports performance: a 
meta-analysis. Psychol Bull. 2021;147:1290–308. https:// doi. org/ 10. 1037/ 
bul00 00355.

 43. Noor D, McCall A, Jones M, et al. Transitioning from club to national 
teams: training and match load profiles of international footballers. J Sci 
Med Sport. 2019;22:948–54.

 44. Akenhead R, Nassis GP. Training load and player monitoring in high-level 
football: current practice and perceptions. Int J Sports Physiol Perform. 
2016;11:587–93.

 45. Buchheit M. Managing high-speed running load in professional soccer 
players: the benefit of high-intensity interval training supplementation. 
Sport Perform Sci Rep. 2019;53:1–5.

 46. Lorains M, MacMahon C, Ball K, et al. Above real time training for team 
invasion sport skills. Int J Sports Sci Coach. 2011;6:537–44.

 47. Albuquerque I, Tiwari A, Parent M et al. Wauc: a multi-modal database for 
mental workload assessment under physical activity. Front Neurosci 2020; 
1037.

 48. Lelis-Torres N, Ugrinowitsch H, Apolinário-Souza T, et al. Task engagement 
and mental workload involved in variation and repetition of a motor skill. 
Sci Rep. 2017;7:1–10.

 49. Rubio S, Díaz E, Martín J, et al. Evaluation of subjective mental workload: 
a comparison of SWAT, NASA-TLX, and workload profile methods. Appl 
Psychol. 2004;53:61–86.

 50. Zamudio J, Catchpole K, Kanji F et al. Using the National Aeronautics 
Space Administration Task Load Index (NASA-TLX) in surgery: Consid-
erations for use “in the wild”. In: Proceedings of the Human Factors and 
Ergonomics Society Annual Meeting. SAGE Publications Sage CA: Los 
Angeles, CA; 2022: 221–225.

 51. Raufi B, Longo L. An Evaluation of the EEG Alpha-to-theta and theta-to-
alpha band ratios as indexes of mental workload. Front Neuroinform 
2022.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3389/fpsyg.2020.00654
https://doi.org/10.1080/10407410709336951
https://doi.org/10.1080/10407410709336951
https://doi.org/10.1080/02640414.2018.1555905
https://doi.org/10.1080/02640414.2018.1555905
https://doi.org/10.1007/978-3-540-39676-5_1
https://doi.org/10.1007/978-3-540-39676-5_1
https://doi.org/10.3389/fpsyg.2018.00025
https://doi.org/10.3389/fpsyg.2018.00025
https://doi.org/10.1016/j.physbeh.2018.01.029
https://doi.org/10.3389/fpsyg.2017.02183
https://doi.org/10.1016/j.scispo.2011.06.013
https://doi.org/10.2307/2929667
https://doi.org/10.1037/bul0000355
https://doi.org/10.1037/bul0000355

	Many Pieces to the Puzzle: A New Holistic Workload Approach to Designing Practice in Sports
	Abstract 
	Key Points
	Introduction
	Present Applications of Representative Learning Design
	Ecological Validity in Representative Learning Design
	Demands of Highly Representative Training

	New Considerations for Measuring the Demands of Representative Training
	Relationships Between Cognitive and Physical Load and Fidelity
	Five Types of Training Within Total Workload Representative Design

	Conclusion
	Acknowledgements
	References


